Published

2025-10-31

Effects of Chemical and Mechanical Treatments on the Surface Roughness and Aerodynamic Performance of FDM-Fabricated ABS Airfoils

Efectos de tratamientos químicos y mecánicos en la rugosidad superficial y el desempeño aerodinámico de perfiles aerodinámicos de ABS fabricados por FDM

DOI:

https://doi.org/10.15446/ing.investig.113187

Keywords:

roughness, wind tunnel, airfoil, surface finishing, fused deposition modeling (en)
aspereza, túneles de viento, perfiles aerodinámicos, acabado superficial, modelado por deposición fundida (es)

Downloads

Authors

Fused deposition modeling (FDM) is a fabrication technology that offers significant advantages for the wind energy industry, particularly in the areas of product design, prototyping, and manufacturing. However, parts produced via FDM often exhibit a relatively rough surface finish due to the intrinsic layer-by-layer process. This study assessed chemical and mechanical treatments aimed at reducing the surface roughness of airfoils fabricated using acrylonitrile-butadiene-styrene (ABS), one of the most widely used polymers in FDM. Surface roughness was characterized using scanning electron microscopy (SEM) and profilometry. Two chemical treatments were evaluated: acetone immersion and acetone vapor exposure. SEM and profilometry revealed crack formation in samples treated by immersion, while vapor exposure resulted in a significantly smoother finish without cracks. Wind tunnel tests demonstrated a 27% increase in the aerodynamic lift-to-drag ratio for airfoils treated with acetone vapor, indicating an improved aerodynamic performance.

El modelado por deposición fundida (FDM) es una tecnología de fabricación que ofrece ventajas significativas para la industria de la energía eólica, especialmente en el diseño de productos, la creación de prototipos y la manufactura. Sin embargo, las piezas fabricadas mediante FDM suelen presentar un acabado superficial áspero debido al proceso intrínseco de fabricación capa por capa. Este estudio evaluó tratamientos químicos y mecánicos para reducir la rugosidad superficial de perfiles aerodinámicos fabricados con acrilonitrilo-butadieno-estireno (ABS), uno de los polímeros más utilizados en FDM. La rugosidad superficial se caracterizó mediante microscopía electrónica de barrido (SEM) y perfilometría. Se analizaron dos tratamientos químicos: inmersión en acetona y exposición a vapor de acetona. El SEM y la perfilometría revelaron la formación de grietas en las muestras tratadas por inmersión, mientras que la exposición a vapor produjo un acabado significativamente más liso y sin grietas. Pruebas realizadas en un túnel de viento mostraron una mejora del 27 % en la relación sustentación-resistencia para los perfiles tratados con vapor de acetona, indicando un mejor desempeño aerodinámico.

References

[1] V. Mazzanti, L. Malagutti, and F. Mollica, "FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties," Polymers, vol. 11, no. 7, 2019. https://doi.org/10.3390/polym11071094

[2] B. Liu, Y. Wang, Z. Lin, and T. Zhang, "Creating metal parts by fused deposition modeling and sintering," Mater. Lett., vol. 263, p. 127252, 2020. https://doi.org/10.1016/j.matlet.2019.127252

[3] P. K. Penumakala, J. Santo, and A. Thomas, "A critical review on the fused deposition modeling of thermoplastic polymer composites," Comp. Part B Eng., vol. 201, p. 108336, 2020. https://doi.org/10.1016/j.compositesb.2020.108336

[4] S. Rahmati and E. Vahabli, "Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results," Int. J. Adv. Manuf. Tech., vol. 79, pp. 823-829, 07 2015. https://doi.org/10.1007/s00170-015-6879-7

[5] S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, "Polymers for 3D printing and customized additive manufacturing," Chem. Rev., vol. 117, pp. 10212-10290, 07 2017. https://doi.org/10.1021/acs.chemrev.7b00074

[6] W. Zhu, "Models for wind tunnel tests based on additive manufacturing technology," Prog. Aerospace Sci., vol. 110, p. 100541, 2019. https://doi.org/10.1016/j.paerosci.2019.05.001

[7] E. Sagol, M. Reggio, and A. Ilinca, "Issues concerning roughness on wind turbine blades," Renew. Sust. Energy Rev., vol. 23, pp. 514-525, 2013. https://doi.org/10.1016/j.rser.2013.02.034

[8] S. Slegers, M. Linzas, J. Drijkoningen, J. D'Haen, N. K. Reddy, and W. Deferme, "Surface roughness reduction of additive manufactured products by applying a functional coating using ultrasonic spray coating," Coatings, vol. 7, no. 12, 2017. https://doi.org/10.3390/coatings7120208

[9] J. Beniak, P. Križan, Ľubomı́r Šooš, and M. Matúš, "Roughness and compressive strength of FDM 3D printed specimens affected by acetone vapour treatment," IOP Conf. Ser. Mater. Sci. Eng., vol. 297, p. 012018, jan 2018. https://doi.org/10.1088/1757-899X/297/1/012018

[10] X. P. Zhang, Y. H. Wang, and L. Q. Ren, "Wind tunnel test for drag reduction of airfoil bionic soft surface," in Advances in Bionic Engineering, Applied Mechanics and Materials, pp. 767-778, Wollerau, Switzerland: Trans Tech Publications Ltd, 2014. https://doi.org/10.4028/www.scientific.net/AMM.461.767

[11] M. Ozkan and O. Erkan, "Control of a boundary layer over a wind turbine blade using distributed passive roughness," Renew. Energy, vol. 184, pp. 421-429, 2022. https://doi.org/10.1016/j.renene.2021.11.082

[12] T. Maci˛ag, J. Wieczorek, and W. Kałsa, "Surface analysis of abs 3D prints subjected to copper plating," Arch. Metallurgy Mater., vol. 64, no. 2, pp. 639-646, 2019. https://doi.org/10.24425/amm.2019.127592

[13] J. Hartcher-O'Brien, J. Evers, and E. Tempelman, "Surface roughness of 3D printed materials: Comparing physical measurements and human perception," Mater. Today Comm., vol. 19, pp. 300-305, 2019. https://doi.org/10.1016/j.mtcomm.2019.01.008

[14] S. M. Baligidad, V. Kaup, A. C. Maharudresh, G. C. Kumar, and K. Elangovan, "Quantitative analysis of surface treatment to enhance surface finish and mechanical characteristics of abs parts," App. Phys. A, vol. 126, pp. 1-13, 2020. https://doi.org/10.1007/s00339-020-03843-5

[15] O. F. Marzuki, A. S. M. Rafie, F. I. Romli, and K. A. Ahmad, "Magnus wind turbine: the effect of sandpaper surface roughness on cylinder blades," Acta Mech., vol. 229, pp. 71 - 85, 2017. https://doi.org/10.1007/s00707-017-1957-6

[16] M. Mu, C.-Y. Ou, J. Wang, and Y. Liu, "Surface modification of prototypes in fused filament fabrication using chemical vapour smoothing," Add. Manuf., vol. 31, p. 100972, 2020. https://doi.org/10.1016/j.addma.2019.100972

[17] L. Galantucci, F. Lavecchia, and G. Percoco, "Experimental study aiming to enhance the surface finish of fused deposition modeled parts," CIRP Annals, vol. 58, no. 1, pp. 189-192, 2009. https://doi.org/10.1016/j.cirp.2009.03.071

[18] M. Khan and S. Mishra, "Minimizing surface roughness of abs-FDM build parts: An experimental approach," Mater. Today Proc., vol. 26, pp. 1557-1566, 2020. https://doi.org/10.1016/j.matpr.2020.02.320

[19] J. S. Chohan, R. Singh, K. S. Boparai, R. Penna, and F. Fraternali, "Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications," Comp. Part B Eng., vol. 117, pp. 138-149, 2017. https://doi.org/10.1016/j.compositesb.2017.02.045

[20] AirfoilTools, "Sg6043 (sg6043-il)," 2021.

[21] L. Zarybnicka, K. Dvorak, Z. Dostálová, and H. Vojáčková, "Study of different printing design type polymer samples prepared by additive manufacturing," Period. Polytech. Chem. Eng., vol. 64, 10 2020. https://doi.org/10.3311/PPch.13991

[22] Zortrax, "Zortrax m200 plus - desktop 3D printer with wi-fi capability," 2021.

[23] M. Ramesh and K. Niranjana, ""effect of process parameters on fused filament fabrication printed composite materials"," High-Perf. Comp. Struct., pp. 155-178, 2022. https://doi.org/10.1007/978-981-16-7377-1_7

[24] P. Kakanuru and K. Pochiraju, "Moisture ingress and degradation of additively manufactured pla, abs and pla/sic composite parts," Add. Manuf., vol. 36, p. 101529, 2020. https://doi.org/10.1016/j.addma.2020.101529

[25] I. Ahmed, Development of Form-Adaptive AirfoilProfiles for Wind Turbine Application. Kassel, Germany:Kassel University Press, 2016.

[26] Q. Li, Y. Kamada, T. Maeda, J. Murata, and N. Yusuke, "Effect of turbulence on power performance of a horizontal axis wind turbine in yawed and no-yawed flow conditions," Energy, vol. 109, pp. 703-711, 2016. https://doi.org/10.1016/j.energy.2016.05.078

[27] G. Richmond-Navarro, T. Uchida, and W. R. Calderón-Muñoz, "Shrouded wind turbine performance in yawed turbulent flow conditions," Wind Eng., vol. 46, no. 2, pp. 518-528, 2022. https://doi.org/10.1177/0309524X211036041

[28] Z. Fakharan, L. Naji, and K. Madanipour, "Surface roughness regulation of reduced-graphene ox- ide/iodine based electrodes and their application in polymer solar cells," J. Colloid Interf. Sci., vol. 540, pp. 272-284, 2019. https://doi.org/10.1016/j.jcis.2019.01.029

[29] J. R. C. Dizon, C. C. L. Gache, H. M. S. Cascolan, L. T. Cancino, and R. C. Advincula, "Post-processing of 3D- printed polymers," Technologies, vol. 9, no. 3, 2021. https://doi.org/10.3390/technologies9030061

[30] J. Singh, R. Singh, and H. Singh, ""post treatment for super finishing of 3D printed thermoplastics"," in Encyclopedia of Materials: Plastics and Polymers, pp. 450-462, Amsterdam, Netherlands: Elsevier, 2020. https://doi.org/10.1016/B978-0-12-820352-1.00020-1

[31] J. Chohan and R. Singh, ""post treatment for super finishing of 3D printed thermosetting polymers based functional prototypes"," in Encyclopedia of Materials: Plastics and Polymers, pp. 463-470, Amsterdam, Netherlands: Elsevier, 2021. https://doi.org/10.1016/B978-0-12-820352-1.00155-3

How to Cite

APA

Matamoros, J., Mora, R., Villareal, C. & Richmond-Navarro, G. (2025). Effects of Chemical and Mechanical Treatments on the Surface Roughness and Aerodynamic Performance of FDM-Fabricated ABS Airfoils. Ingeniería e Investigación, 45(2), e113187. https://doi.org/10.15446/ing.investig.113187

ACM

[1]
Matamoros, J., Mora, R., Villareal, C. and Richmond-Navarro, G. 2025. Effects of Chemical and Mechanical Treatments on the Surface Roughness and Aerodynamic Performance of FDM-Fabricated ABS Airfoils. Ingeniería e Investigación. 45, 2 (Aug. 2025), e113187. DOI:https://doi.org/10.15446/ing.investig.113187.

ACS

(1)
Matamoros, J.; Mora, R.; Villareal, C.; Richmond-Navarro, G. Effects of Chemical and Mechanical Treatments on the Surface Roughness and Aerodynamic Performance of FDM-Fabricated ABS Airfoils. Ing. Inv. 2025, 45, e113187.

ABNT

MATAMOROS, J.; MORA, R.; VILLAREAL, C.; RICHMOND-NAVARRO, G. Effects of Chemical and Mechanical Treatments on the Surface Roughness and Aerodynamic Performance of FDM-Fabricated ABS Airfoils. Ingeniería e Investigación, [S. l.], v. 45, n. 2, p. e113187, 2025. DOI: 10.15446/ing.investig.113187. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/113187. Acesso em: 27 dec. 2025.

Chicago

Matamoros, Jose, Rafael Mora, Claudia Villareal, and Gustavo Richmond-Navarro. 2025. “Effects of Chemical and Mechanical Treatments on the Surface Roughness and Aerodynamic Performance of FDM-Fabricated ABS Airfoils”. Ingeniería E Investigación 45 (2):e113187. https://doi.org/10.15446/ing.investig.113187.

Harvard

Matamoros, J., Mora, R., Villareal, C. and Richmond-Navarro, G. (2025) “Effects of Chemical and Mechanical Treatments on the Surface Roughness and Aerodynamic Performance of FDM-Fabricated ABS Airfoils”, Ingeniería e Investigación, 45(2), p. e113187. doi: 10.15446/ing.investig.113187.

IEEE

[1]
J. Matamoros, R. Mora, C. Villareal, and G. Richmond-Navarro, “Effects of Chemical and Mechanical Treatments on the Surface Roughness and Aerodynamic Performance of FDM-Fabricated ABS Airfoils”, Ing. Inv., vol. 45, no. 2, p. e113187, Aug. 2025.

MLA

Matamoros, J., R. Mora, C. Villareal, and G. Richmond-Navarro. “Effects of Chemical and Mechanical Treatments on the Surface Roughness and Aerodynamic Performance of FDM-Fabricated ABS Airfoils”. Ingeniería e Investigación, vol. 45, no. 2, Aug. 2025, p. e113187, doi:10.15446/ing.investig.113187.

Turabian

Matamoros, Jose, Rafael Mora, Claudia Villareal, and Gustavo Richmond-Navarro. “Effects of Chemical and Mechanical Treatments on the Surface Roughness and Aerodynamic Performance of FDM-Fabricated ABS Airfoils”. Ingeniería e Investigación 45, no. 2 (August 1, 2025): e113187. Accessed December 27, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/113187.

Vancouver

1.
Matamoros J, Mora R, Villareal C, Richmond-Navarro G. Effects of Chemical and Mechanical Treatments on the Surface Roughness and Aerodynamic Performance of FDM-Fabricated ABS Airfoils. Ing. Inv. [Internet]. 2025 Aug. 1 [cited 2025 Dec. 27];45(2):e113187. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/113187

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

66

Downloads

Download data is not yet available.