Published

2025-07-30

Active Disturbance Rejection Control of a DC Brushed Motor Using Simulink and Raspberry Pi

Control por rechazo activo de perturbaciones de un motor DC con escobillas utilizando Simulink y Raspberry Pi

DOI:

https://doi.org/10.15446/ing.investig.114438

Keywords:

ADRC, MATLAB, coreless brushed DC motor, automatic control, Raspberry Pi (en)
ADRC, MATLAB, motor DC con escobillas sin núcleo, control automático, Raspberry Pi (es)

Downloads

Authors

Active disturbance rejection control (ADRC) is a robust methodology that does not require precise knowledge of the plant. Developed in China by Professor Jingqing Han, it is based on PID control, state observers, and nonlinear functions. Brushed DC motors are known for their low cost and the noise they introduce into control circuits. This paper demonstrates that ADRC can effectively control low-power brushed DC motors using a general nonlinear model and Simulink for tuning. The model is simulated using parameters provided by the manufacturer. An ADRC developed and programmed by the authors in MATLAB is then integrated into the simulation. The controller is tuned, and its performance is verified. Subsequently, the ADRC is implemented on a Raspberry Pi 3 using MATLAB’s support packages and methods developed by the authors. The controller is tested on a Faulhaber 2342L012CR DC motor (12 V/17 W). The results show that it is possible to control the position of the low-power brushed DC motor through simulation-based tuning. The interaction between Simulink and Raspberry Pi 3 enables an optimal control characterized by a fast response, a minimal steady-state error, and no perceptible overshoot. This implementation demonstrates that ADRC is a practical and efficient control method for brushed DC motors.

El control activo de rechazo de perturbaciones (ADRC) es un método robusto que no requiere un conocimiento preciso de la planta. Desarrollado en China por el profesor Jingqing Han, se basa en control PID, observadores de estado y funciones no lineales. Los motores DC con escobillas son conocidos por su bajo costo y el ruido que introducen en los circuitos de control. Este artículo demuestra que ADRC puede controlar eficazmente motores de DC de baja potencia con escobillas utilizando un modelo general no lineal y Simulink para su sintonización. Este modelo se simula utilizando parámetros proporcionados por el fabricante. Luego, se integra a la simulación un ADRC desarrollado y programado por los autores en MATLAB. Se sintoniza el controlador y se verifica su rendimiento. Posteriormente, el ADRC es implementado en una Raspberry Pi 3 utilizando los paquetes de apoyo de MATLAB y métodos desarrollados por los autores. El controlador es puesto a prueba en un motor de DC Faulhaber 2342L012CR (12 V/17 W). Los resultados muestran que es posible controlar la posición del motor de DC con escobillas de baja potencia mediante una sintonización basada en simulación. La interacción entre Simulink y Raspberry Pi 3 permite un sistema de control óptimo caracterizado por una respuesta rápida, un error mínimo en estado estacionario y ningún sobrepico perceptible. Esta implementación demuestra que el ADRC es un método de control práctico y eficiente para motores de DC con escobillas.

References

[1] J. Han, “From PID to active disturbance rejection con-trol,” IEEE Trans. Ind. Elect., vol. 56, no. 3, pp. 900–906, 2009. https://doi.org/10.1109/TIE.2008.2011621

[2] Zhiqiang Gao, Yi Huang, and Jingqing Han, “An alterna-tive paradigm for control system design,” in Proc. 40th IEEE Conf. Dec. Control (Cat. No.01CH37228), vol. 5, no. February, pp. 4578–4585, 2001. https://doi.org/10.1109/.2001.980926

[3] T. A. Khaled, O. Akhrif, and I. A. Bonev, “Dynamic path correction of an industrial robot using a distance sensor and an ADRC controller,” IEEE/ASME Trans. Mechatron-ics, vol. 26, no. 3, pp. 1646–1656, 2020. https://doi.org/10.1109/TMECH.2020.3026994

[4] C. Liu, G. Luo, X. Duan, Z. Chen, Z. Zhang, and C. Qiu, “Adaptive LADRC-based disturbance rejection method for electromechanical servo system,” IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 876–889, 2019. https://doi.org/10.1109/TIA.2019.2955664

[5] H. Jin, J. Song, W. Lan, and Z. Gao, “On the characteris-tics of ADRC: A PID interpretation,” Sci. China Info. Sci., vol. 63, no. 10, art. 209201, 2020. DOI: https://doi.org/10.1007/s11432-018-9647-6

[6] L. Zhi, M. Huang, L. Qian, Z. Wang, Q. Wen, and W. Han, “Research on active disturbance rejection control with parameter autotuning for a moving mirror control system based on improved snake optimization,” Electron-ics, vol. 13, no. 9, May 2024. https://doi.org/10.3390/electronics13091650

[7] C. Du, Z. Yin, Y. Zhang, J. Liu, X. Sun, and Y. Zhong, “Research on active disturbance rejection control with parameter autotune mechanism for induction motors based on adaptive particle swarm optimization algorithm with dynamic inertia weight,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2841–2855, Mar. 2019. https://doi.org/10.1109/TPEL.2018.2841869

[8] L. Xu, S. Zhuo, J. Liu, S. Jin, Y. Huangfu, and F. Gao, "Advancement of active disturbance rejection control and its applications in power electronics," in IEEE Trans. Ind. Appl., vol. 60, no. 1, pp. 1680-1694, Jan.-Feb. 2024. https://doi.org/10.1109/TIA.2023.3312653

[9] H. Lu, X. Zhu, C. Ren, S. Ma, and W. Wang, "Active disturbance rejection sliding mode altitude and attitude control of a quadrotor with uncertainties," in 2016 12th World Cong. Intell. Control Autom. (WCICA), Guilin, Chi-na, 2016, pp. 1366-1371. https://doi.org/10.1109/WCICA.2016.7578812

[10] K. Xu, L. Lang, Q. Wei, and H. Ma, “Design of single leg foot force controller for hydraulic actuated quadruped robot based on ADRC,” in Chinese Control Conf., CCC, vol. 2015-Sept, no. 61473304, pp. 1228–1233, 2015. https://doi.org/10.1109/ChiCC.2015.7259809

[11] X. Meng, H. Yu, J. Zhang, T. Xu, and H. Wu, “Liquid level control of four-tank system based on active dis-turbance rejection technology,” Measurement, vol. 175, art. 109146, 2021. https://doi.org/10.1016/j.measurement.2021.109146

[12] H. Sira-Ramírez, J. Linares-Flores, A. Luviano-Juárez, and J. Cortés-Romero, “Ultramodelos globales y el control por rechazo activo de perturbaciones en sistemas no li-neales diferencialmente planos,” Rev. Iberoamer. Autom. Infor. Ind., vol. 12, no. 2, pp. 133–144, 2015. https://doi.org/10.1016/j.riai.2015.02.001

[13] Y. Lei, J. Xu, and Q. Hao, “Application of ADRC in stabil-ity control of tank gun system,” in Proc. 2018 IEEE 7th Data Driven Control Learn. Syst. Conf., DDCLS 2018, 2018, pp. 670–675. https://doi.org/10.1109/DDCLS.2018.8515958

[14] G. Pasolini, F. Zabini, A. Bazzi, and S. Olivieri, “A software defined radio platform with Raspberry Pi and Simulink,” in 2016 24th Euro. Signal Proc. Conf. (EUSIPCO), 2016, pp. 398–402. https://doi.org/10.1109/EUSIPCO.2016.7760278

[15] A. Ferdjali, M. Stanković, S. Manojlović, R. Madonski, D. Bujaković, and A. Djenadbia, "Systematic design of non-linear ADRC for laser seeker system with FPGA-based rapid prototyping validation," Aircraft Eng. Aerospace Tech., vol. 94, no. 7, pp. 1087–1099, 2022. https://doi.org/10.1108/AEAT-06-2021-0188

[16] H. Zhang, Q. Zhang, Y. Zhang, A. Zhao, T. Ni, and K. Yang, “A DSP-based magnetic compensation system for optically pumped magnetometer,” IEEE Sens. J., 2023. DOI: https://doi.org/10.1109/JSEN.2023.3331358

[17] H. K. Kondaveeti, D. Bandi, S. E. Mathe, S. Vappangi, and M. Subramanian, "A review of image processing applica-tions based on Raspberry Pi," 2022 8th Int. Conf. Adv. Comp. Comm. Syst. (ICACCS), Coimbatore, India, 2022, pp. 22–28. https://doi.org/10.1109/ICACCS54159.2022.9784958

[18] J. Á. Ariza and C. N. Galvis, "RaspyControl Lab: A fully open-source and real-time remote laborato-ry for education in automatic control systems using Raspberry Pi and Python," HardwareX, vol. 13, art. e00396, 2023. https://doi.org/10.1016/j.ohx.2023.e00396

[19] S. E. Mathe, A. C. Pamarthy, H. K. Kondaveeti, and S. Vappangi, "A review on Raspberry Pi and its robotic ap-plications," 2022 2nd Int. Conf. Art. Intell. Signal Proc. (AISP), Vijayawada, India, 2022, pp. 1–6. https://doi.org/10.1109/AISP53593.2022.9760590

[20] A. James, A. Seth, and S. C. Mukhopadhyay, "Program-ming Raspberry Pi for IoT system," in IoT System Design, S. C. Mukhopadhyay, Ed., Cham, Switzerland: Springer, 2022, vol. 41, pp. 51-79. https://doi.org/10.1007/978-3-030-85863-6_4

[21] D. Papakyriakou and I. Barbounakis, "Benchmarking and review of Raspberry Pi (RPi) 2B vs RPi 3B vs RPi 3B+ vs RPi 4B (8GB)," Int. J. Comp. Appl., vol. 185, 2023. https://doi.org/10.5120/ijca2023922693

[22] E. Ilten and M. Demirtas, "Liquid level control interface design on Simulink external mode with Raspberry Pi," in Proc. Int. Conf. Mod. Adv. Res., Konya, Turkey, Aug. 2023, pp. 85–88.

[23] K. Utari, N. Mulyaningsih, I. Astuti, Y. Bhakti, and Z. Zulherman, "Physics calculator application with MATLAB as a learning media to thermodynamics con-cept," Momentum: Phys. Edu. J., vol. 5, no. 2, pp. 101–110, 2021. https://doi.org/10.21067/mpej.v5i2.5133

[24] R. P. Borase, D. K. Maghade, S. Y. Sondkar, and others, "A review of PID control, tuning methods and applica-tions," Int. J. Dynamics Control, vol. 9, pp. 818–827, 2021. https://doi.org/10.1007/s40435-020-00665-4

[25] J. A. Niembro-Ceceña, R. A. Gómez-Loenzo, and J. Rodríguez-Reséndiz, “SoftCtrlDC-M: Embedded control software for brushed direct current motors,” SoftwareX, vol. 25, art. 101643, Feb. 2024. https://doi.org/10.1016/j.softx.2024.101643

[26] S. Liu, M. Xue, Y. Qiu, X. Zhou, and Q. Zhao, "Design of the missile attitude controller based on the active dis-turbance rejection control," J. Aerospace Tech. Manage., vol. 14, art. 1255, 2022. https://doi.org/10.1590/jatm.v14.1255

[27] M. Megrini, A. Gaga, and Y. Mehdaoui, “Processor in the loop implementation of artificial neural network control-ler for BLDC motor speed control,” Results Eng., vol. 23, art. 102422, Sep. 2024. https://doi.org/10.1016/j.rineng.2024.102422

[28] R. Zeng, J. Zhao, Y. Xiong, and X. Luo, “Active disturb-ance rejection control of five-phase motor based on pa-rameter setting of genetic algorithm,” Processes, vol. 11, no. 6, art. 1712, Jun. 2023. https://doi.org/10.3390/pr11061712

[29] M. V. Srikanth and N. Yadaiah, “A magnitude optimum approach for tuning Reduced-order ADRC with FOPDT models,” in 2021 7th Indian Control Conf., 2021, pp. 46–51. https://doi.org/10.1109/ICC54714.2021.9703133

[30] W. Ai, M. Wu, X. Li, and X. Li, “Active disturbance rejection based iterative learning control for direct torque control of switched reluctance motor drive,” in Proc. 2021 IEEE 10th Data Driven Control Learn. Syst. Conf., May 2021, pp. 1379–1384. doi: 10.1109/DDCLS52934.2021.9455497

[31] M. M. Rahman, M. A. Al Mamon, and M. M. Rahaman, “Active disturbance rejection control based speed con-trol of DC motor,” in 2022 Int. Conf. Adv. Elect. Electron. Eng., Gazipur, Bangladesh, 2022. https://doi.org/10.1109/ICAEEE54957.2022.9836391

[32] S. Shafi, P. S. Hamid, S. A. Nahvi, M. H. Koul, and M. A. Bazaz, "Active disturbance rejection control of angular position of a DC servo motor," 2023 Int. Conf. Power Inst. Energy Control (PIECON), Aligarh, India, 2023, pp. 1–5. https://doi.org/10.1109/PIECON56912.2023.10085795

[33] S. Bose, Y. V. Hote and D. Sengupta, "Analysis and con-trol of real-time DC servo system using linear ADRC," 2018 15th IEEE India Council Int. Conf. (INDICON), Co-imbatore, India, 2018, pp. 1–6. https://doi.org/10.1109/INDICON45594.2018.8987040

[34] E. Ilten, "Active disturbance rejection control of a DC motor with Raspberry Pi on Simulink external mode," AS-Proceedings, vol. 1, art. 124, 2023. https://doi.org/10.59287/as-proceedings.124

[35] H. Sira-Ramírez, R. Castro-Linares, and G. Puriel-Gil, “An active disturbance rejection approach to leader-follower controlled formation,” Asian J. Control, vol. 16, no. 2, pp. 382–395, 2014. https://doi.org/10.1002/asjc.714

[36] C. Zhang and S. He, "Generalized output feedback active disturbance rejection control for uncertain lower-triangular nonlinear systems," 2016 35th Chinese Control Conf. (CCC), Chengdu, China, 2016, pp. 533–538. https://doi.org/10.1109/ChiCC.2016.7553140

[37] D. Wu and K. Chen, “Frequency-domain analysis of nonlinear active disturbance rejection control via the describing function method,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3906–3914, 2013. https://doi.org/10.1109/TIE.2012.2203777

[38] Y. Wang, J. Zhang, and W. Dong, “A new algorithm in blackbody temperature control system based on ADRC,” 2017 IEEE Int. Conf. Mechatronics Autom., 2017, pp. 226–230. https://doi.org/10.1109/ICMA.2017.8015818

[39] Z. Shen, “Design and simulation of naval gun servo con-troller based on ADRC,” Proc. 2019 11th Int. Conf. Meas. Tech. Mechatronics Autom., pp. 345–349, 2019. https://doi.org/10.1109/ICMTMA.2019.00083

[40] P. Jiang, J. Y. Hao, X. P. Zong, and P. G. Wang, “Modeling and simulation of active-disturbance-rejection controller with Simulink,” 2010 Int. Conf. Machine Learn. Cyber., 2010, vol. 2, no. July, pp. 927–931. https://doi.org/10.1109/ICMLC.2010.5580604

[41] D. Liu, C. Min, J. Cui, and D. Feng, “Design of attitude controller for hyper velocity projectile based on active disturbance rejection control,” in Int. Conf. Guid. Nav. Control, 2022, pp. 2709–2719. https://doi.org/10.1007/978-981-19-6613-2_264

[42] R. Isermann, Fault-diagnosis systems: An introduction from fault detection to fault tolerance, 1st ed. Berlin, Germany: Springer-Verlag, 2006. https://doi.org/10.1007/3-540-30368-5

[43] X. Ruan, X. Wang, X. Zhu, Z. Chen, and R. Sun, “Active disturbance rejection control of Single wheel robot,” in Proc. World Cong. Intell. Control Autom. (WCICA), 2015, pp. 4105–4110. https://doi.org/10.1109/WCICA.2014.7053403

[44] K. Xu, L. Lang, Q. Wei, and H. Ma, “Design of single leg foot force controller for hydraulic actuated quadruped robot based on ADRC,” Chinese Control Conf., CCC, 2015, vol. 2015-Sept, no. 61473304, pp. 1228–1233. https://doi.org/10.1109/ChiCC.2015.7259809

[45] S. Liu, M. Xue, Y. Qiu, X. Zhou, and Q. Zhao, “Design of the missile attitude controller based on the active dis-turbance rejection control,” J. Aerospace Tech. Manage., vol. 14, art. e1322, 2022. https://doi.org/10.1590/jatm.v14.1255

[46] X. Ruan, X. Wang, X. Zhu, Z. Chen, and R. Sun, “Active disturbance rejection control of Single wheel robot,” in Proc. World Cong. Intell. Control Autom. (WCICA) (WCI-CA), 2015, pp. 4105–4110. https://doi.org/10.1109/WCICA.2014.7053403

How to Cite

APA

González N., M. E., Sierra H., O. H. & Higuera M., O. I. (2025). Active Disturbance Rejection Control of a DC Brushed Motor Using Simulink and Raspberry Pi. Ingeniería e Investigación, 45(1), e114438. https://doi.org/10.15446/ing.investig.114438

ACM

[1]
González N., M.E., Sierra H., O.H. and Higuera M., O.I. 2025. Active Disturbance Rejection Control of a DC Brushed Motor Using Simulink and Raspberry Pi. Ingeniería e Investigación. 45, 1 (Mar. 2025), e114438. DOI:https://doi.org/10.15446/ing.investig.114438.

ACS

(1)
González N., M. E.; Sierra H., O. H.; Higuera M., O. I. Active Disturbance Rejection Control of a DC Brushed Motor Using Simulink and Raspberry Pi. Ing. Inv. 2025, 45, e114438.

ABNT

GONZÁLEZ N., M. E.; SIERRA H., O. H.; HIGUERA M., O. I. Active Disturbance Rejection Control of a DC Brushed Motor Using Simulink and Raspberry Pi. Ingeniería e Investigación, [S. l.], v. 45, n. 1, p. e114438, 2025. DOI: 10.15446/ing.investig.114438. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/114438. Acesso em: 25 dec. 2025.

Chicago

González N., Mario E., Oscar H. Sierra H., and Oscar I. Higuera M. 2025. “Active Disturbance Rejection Control of a DC Brushed Motor Using Simulink and Raspberry Pi”. Ingeniería E Investigación 45 (1):e114438. https://doi.org/10.15446/ing.investig.114438.

Harvard

González N., M. E., Sierra H., O. H. and Higuera M., O. I. (2025) “Active Disturbance Rejection Control of a DC Brushed Motor Using Simulink and Raspberry Pi”, Ingeniería e Investigación, 45(1), p. e114438. doi: 10.15446/ing.investig.114438.

IEEE

[1]
M. E. González N., O. H. Sierra H., and O. I. Higuera M., “Active Disturbance Rejection Control of a DC Brushed Motor Using Simulink and Raspberry Pi”, Ing. Inv., vol. 45, no. 1, p. e114438, Mar. 2025.

MLA

González N., M. E., O. H. Sierra H., and O. I. Higuera M. “Active Disturbance Rejection Control of a DC Brushed Motor Using Simulink and Raspberry Pi”. Ingeniería e Investigación, vol. 45, no. 1, Mar. 2025, p. e114438, doi:10.15446/ing.investig.114438.

Turabian

González N., Mario E., Oscar H. Sierra H., and Oscar I. Higuera M. “Active Disturbance Rejection Control of a DC Brushed Motor Using Simulink and Raspberry Pi”. Ingeniería e Investigación 45, no. 1 (March 31, 2025): e114438. Accessed December 25, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/114438.

Vancouver

1.
González N. ME, Sierra H. OH, Higuera M. OI. Active Disturbance Rejection Control of a DC Brushed Motor Using Simulink and Raspberry Pi. Ing. Inv. [Internet]. 2025 Mar. 31 [cited 2025 Dec. 25];45(1):e114438. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/114438

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

200

Downloads

Download data is not yet available.