Published

2025-06-19

Lightweight Deep Learning for Atrial Fibrillation Detection: Efficient Models for Wearable Devices

Aprendizaje profundo ligero para la detección de fibrilación auricular: modelos eficientes para dispositivos portátiles

DOI:

https://doi.org/10.15446/ing.investig.114530

Keywords:

cardiac arrhythmia, deep learning, detection, ECG, electrocardiogram, machine learning, portable device (en)
arritmia cardiaca, aprendizaje profundo, detección, ECG, electrocardiograma, aprendizaje automático, dispositivo portátil (es)

Downloads

Authors

The timely and accurate detection of atrial fibrillation (AF) is crucial for an early intervention and for reducing the associated health risks. Wearable technology has emerged as a viable solution for continuous AF monitoring, but deploying accurate AF detection models on resource-constrained devices remains a challenge due to the high computational and memory demands. This study proposes a lightweight and efficient deep learning approach for real-time AF diagnosis in portable devices. We designed a series of convolutional neural network (CNN) models optimized for high accuracy while maintaining a minimal computational footprint. To further enhance efficiency, we explored deep learning compression techniques, including pruning, quantization, and knowledge distillation. Our results demonstrate that the proposed models achieve state-of-the-art accuracy while significantly reducing memory usage and computational complexity, making them suitable for real-time deployment. Additionally, we validated their feasibility by implementing them on a microcontroller, showcasing their practicality for wearable applications. This research paves the way for accessible, low-power, and high-accuracy AF detection in real-world settings, enabling early diagnosis and timely medical intervention without the need for continuous clinical supervision.

La detección temprana y precisa de la fibrilación auricular (FA) es fundamental para una intervención oportuna y la reducción de riesgos asociados. La tecnología wearable ha surgido como una solución viable para el monitoreo continuo de la FA, pero la implementación de modelos precisos de detección en dispositivos con recursos limitados sigue siendo un desafío debido a las altas demandas computacionales y de memoria. Este estudio propone un enfoque de aprendizaje profundo ligero y eficiente para el diagnostico en tiempo real de la FA en dispositivos portátiles. Diseñamos una serie de modelos de redes neuronales convolucionales (CNN) optimizados para alcanzar alta precisión a la vez que mantenían un bajo costo computacional. Para mejorar aun mas la eficiencia, exploramos técnicas de compresión de aprendizaje profundo, incluyendo poda, cuantización y destilación de conocimiento. Nuestros resultados demuestran que los modelos propuestos logran una precisión de ultima generación mientras reducen significativamente el uso de memoria y la complejidad computacional, lo que los hace adecuados para su implementación en dispositivos de borde. Además, validamos su viabilidad implementándolos en un microcontrolador, demostrando su su aplicabilidad en wearables. Esta investigación abre el camino para una detección de FA accesible, de bajo consumo y de alta precisión en entornos reales, permitiendo un diagnostico temprano y una intervención medica oportuna sin necesidad de supervisión clínica continua.

References

[1] C. A. Morillo et al., “Atrial fibrillation: The current epidemic,” J. Ger. Card., vol. 14, no. 3, p. 195, 2017. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/28592963/

[2] J. Primo et al., “Prevalence of paroxysmal atrial fibrillation in a population assessed by continuous 24-hour monitoring,” Rev. Port. Card., vol. 36, no. 7-8, pp. 535–546, 2017. https://doi.org/10.1016/j.repce.2016.11.013

[3] C. Y. Chenggong Xie, Zhao Wang, J. Liu, and H. Liang, “Machine learning for detecting atrial fibrillation from ecgs: Systematic review and metaanalysis,” RCM, vol. 25, no. 1, p. 8, 2024. https://doi.org/10.31083/j.rcm2501008

[4] A. Y. Hannun et al., “Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network,” Nature Med., vol. 25, no. 1, pp. 65–69, 2019. http://dx.doi.org/10.1038/s41591-018-0268-3

[5] C. A. Fajardo, A. S. Parra, T. Castellanos-Paradaa, and K. Roy, “Low-complexity deep learning models for accurate atrial fibrillation diagnosis,” in 26th Eur. Conf. Art. Intel., 2023. [Online]. Available: https://ecai2023.eu/conf-data/ecai2023/files/STAIRS/stairs2023_05.pdf

[6] L. Biel, O. Pettersson, L. Philipson, and P. Wide, “Ecg analysis: a new approach in human identification,” IEEE Trans. Inst. Measure, vol. 50, no. 3, pp. 808–812, 2001. https://doi.org/10.1109/19.930458

[7] R. Avanzato and F. Beritelli, “Automatic ecg diagnosis using convolutional neural network,” Electronics, vol. 9, no. 6, p. 951, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/6/951 DOI: https://doi.org/10.3390/electronics9060951

[8] J. A. Castillo, Y. C. Granados, and C. A. Fajardo, “Patient-specific detection of atrial fibrillation in segments of ecg signals using deep neural networks,” Cien. Ing. Neogranadina, vol. 30, no. 1, pp. 45–58, 2020. https://doi.org/10.18359/rcin.4156

[9] S. Tan, G. Androz, A. Chamseddine, P. Fecteau, A. Courville, Y. Bengio, and J. P. Cohe “Icentia11k: An unsupervised representation learning dataset for arrhythmia subtype discovery,” arXiv preprint arXiv:1910.09570, 2019. [Online]. Available: https://arxiv.org/abs/1910.09570

[10] CardioSTAT, “Ambulatory Cardiac Monitoring,” 2021. [Online]. Available: https://www.cardiostat.com/

[11] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng, “Cardiologist-level arrhythmia detection with convolutional neural networks,” arXiv preprint: 1707.01836, 2017. [Online]. Available: https://arxiv.org/abs/1707.01836

[12] Z. Xiong, M. K. Stiles, and J. Zhao, “Robust ECG signal classification for detection of atrial fibrillation using a novel neural network,” Comp. Card., vol. 44, pp. 1–4, 2017. https://doi.org/10.22489/CinC.2017.066-138

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comp. Vis. Pattern Recog., 2016, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90

[14] G. C. Marino´ , A. Petrini, D. Malchiodi, and M. Frasca, “Deep neural networks compression: A comparative survey and choice recommendations,” Neurocomputing, vol. 520, pp. 152–170, 2023. https://doi.org/10.1016/j.neucom.2022.11.072

[15] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 mb model size,” arXiv preprint: 1602.07360, 2016. [Online]. Available: https://arxiv.org/abs/1602.07360

[16] C. Bucilua, R. Caruana, and A. Niculescu- Mizil, “Model compression,” in Proc. 12th ACM SIGKDD Int. Conf. Know. Disc. Data Mining, 2006, pp. 535–541. https://doi.org/10.1145/1150402.1150464

[17] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint: 1503.02531, 2015. [Online]. Available: http://arxiv.org/abs/1503.02531

[18] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for efficient neural networks,” arXiv preprint: 1506.02626, pp. 1–9, 2015. [Online]. Available: http://arxiv.org/abs/1506.02626

[19] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko, “Quantization and training of neural networks for efficient integerarithmetic- only inference,” in Proc. IEEE Conf. Comp. Vis. Pattern Recog., 2018, pp. 2704–2713. https://doi.org/10.1109/CVPR.2018.00286

[20] SparkFun-Electronics, “Teensy 4.1.” [Online]. Available: https://www.sparkfun.com/products/16771

[21] O. A. Ademola, M. Leier, and E. Petlenkov, “Evaluation of deep neural network compression methods for edge devices using weighted scorebased ranking scheme,” Sensors, vol. 21, no. 22, p. 7529, 2021. https://doi.org/10.3390/s21227529

[22] J. Rubin, S. Parvaneh, A. Rahman, B. Conroy, and S. Babaeizadeh, “Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ecg recordings,” J. Electrocard., vol. 51, no. 6, pp. S18–S21, 2018. https://doi.org/10.1016/j.jelectrocard.2018.08.008

[23] Q. Yao, R. Wang, X. Fan, J. Liu, and Y. Li, “Multi-class arrhythmia detection from 12-lead variedlength ECG using attention-based time-incremental convolutional neural network,” Info. Fus., vol. 53, no. June 2019, pp. 174–182, 2020. https://doi.org/10.1016/j.inffus.2019.06.024

[24] K. Fonseca, S. Osorio, J. Castillo, and C. Fajardo, “Contrastive learning for atrial fibrillation detection in challenging scenarios,” in 2022 30th Eur. Signal Proc. Conf. (EUSIPCO). IEEE, 2022, pp. 1218–1222. https://doi.org/10.23919/EUSIPCO55093.2022.9909842

[25] A. R. Iskandar, S. Jundi, H. Rifaı, and N. Rizoug, “Ecg classification using an optimal temporal convolutional network for remote health monitoring,” Sensors, vol. 23, no. 3, p. 1697, 2023. https://doi.org/10.3390/s23031697

[26] S. Asgari et al., “Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine,” Comp. Biol. Med., vol. 60, pp. 132–142, 2015. https://doi.org/10.1016/j.compbiomed.2015.03.005

[27] R. J. Martis et al., “Automated detection of atrial fibrillation using bayesian paradigm,” Konwledgebased Syst., vol. 54, pp. 269–275, 2013. https://doi.org/10.1016/j.knosys.2013.09.016

[28] M. Mohebbi and H. Ghassemian, “Detection of atrial fibrillation episodes using svm,” in 2008 30th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE, 2008, pp. 177–180. https://doi.org/10.1109/IEMBS.2008.4649119

[29] S. Parvaneh, J. Rubin, S. Babaeizadeh, and M. Xu-Wilson, “Cardiac arrhythmia detection using deep learning: A review,” J. Electrocard., vol. 57, pp. S70–S74, 2019. https://doi.org/10.1016/j.jelectrocard.2019.08.004

[30] A. H. Ribeiro, D. M. Tavares de Oliveira, P. R. Gomes, D. Canazart, M. Ferreira, C. R. Andersson, A. L. Ribeiro, T. B. Schon, W. Meira, and L. P. Rocha, “Automatic diagnosis of the 12-lead ecg using a deep neural network,” Nature Comm., vol. 11, no. 1, p. 1760, 2020. https://doi.org/10.1038/s41467-020-15432-4

[31] O. Yildirim, U. B. Baloglu, R. Tan, and U. R. Acharya, “Arrhythmia classification using transformer-based deep learning model,” Biomed. Signal Proc. Control, vol. 81, p. 104477, 2023.

[32] J. Rubin, S. Parvaneh, A. Rahman, B. Conroy, and S. Babaeizadeh, “Densely connected convolutional networks for ecg classification,” J. Electrocard., vol. 57, pp. S20–S24, 2018.

[33] Y. Oh, H. Moon, D. Kim, J. Park, and D. Kim, “Transformer-based arrhythmia detection on ecg signals,” Sensors, vol. 22, no. 8, p. 2966, 2022.

[34] I. J. Selvam, M. Madhavan, and S. K. Kumarasamy, “Detection and classification of electrocardiography using hybrid deep learning models,” Hellenic J. Card., vol. 81, pp. 75–84, 2025. https://doi.org/10.1016/j.hjc.2024.08.011

[35] A. R. Ismail, S. Jovanovic, N. Ramzan, and H. Rabah, “Ecg classification using an optimal temporal convolutional network for remote health monitoring,” Sensors, vol. 23, no. 3, p. 1697, 2023. https://doi.org/10.3390/s23031697

[36] T. Mahmud, A. Barua, D. Islam, M. S. Hossain, R. Chakma, K. Barua, M. Monju, and K. Andersson, “Ensemble deep learning approach for ECG-based cardiac disease detection: Signal and image analysis,” in 2023 Int. Conf. Info. Comm. Tech. Sust. Dev. (ICICT4SD), 2023, pp. 70–74. https://doi.org/10.1109/ICICT4SD59951.2023.10303625

[37] Z. Zhao, X. Dong, J. Liu, Y. Guo, and Y. Yao, “ECG classification using a lightweight transformer-based model,” Biomed Signal Proc. Control, vol. 78, p. 103931, 2022.

[38] E. Tanghatari, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Federated learning by employing knowledge distillation on edge devices with limited hardware resources, Neurocomputing, vol. 531, pp. 87–99, 2023. https://doi.org/10.1016/j.neucom.2023.02.011

How to Cite

APA

Fajardo, C. A., Parra, A. S. & Castellanos-Parada, T. V. (2025). Lightweight Deep Learning for Atrial Fibrillation Detection: Efficient Models for Wearable Devices. Ingeniería e Investigación, 45(1), e114530. https://doi.org/10.15446/ing.investig.114530

ACM

[1]
Fajardo, C.A., Parra, A.S. and Castellanos-Parada, T.V. 2025. Lightweight Deep Learning for Atrial Fibrillation Detection: Efficient Models for Wearable Devices. Ingeniería e Investigación. 45, 1 (Mar. 2025), e114530. DOI:https://doi.org/10.15446/ing.investig.114530.

ACS

(1)
Fajardo, C. A.; Parra, A. S.; Castellanos-Parada, T. V. Lightweight Deep Learning for Atrial Fibrillation Detection: Efficient Models for Wearable Devices. Ing. Inv. 2025, 45, e114530.

ABNT

FAJARDO, C. A.; PARRA, A. S.; CASTELLANOS-PARADA, T. V. Lightweight Deep Learning for Atrial Fibrillation Detection: Efficient Models for Wearable Devices. Ingeniería e Investigación, [S. l.], v. 45, n. 1, p. e114530, 2025. DOI: 10.15446/ing.investig.114530. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/114530. Acesso em: 26 dec. 2025.

Chicago

Fajardo, Carlos A., Andrés S. Parra, and Tania V. Castellanos-Parada. 2025. “Lightweight Deep Learning for Atrial Fibrillation Detection: Efficient Models for Wearable Devices”. Ingeniería E Investigación 45 (1):e114530. https://doi.org/10.15446/ing.investig.114530.

Harvard

Fajardo, C. A., Parra, A. S. and Castellanos-Parada, T. V. (2025) “Lightweight Deep Learning for Atrial Fibrillation Detection: Efficient Models for Wearable Devices”, Ingeniería e Investigación, 45(1), p. e114530. doi: 10.15446/ing.investig.114530.

IEEE

[1]
C. A. Fajardo, A. S. Parra, and T. V. Castellanos-Parada, “Lightweight Deep Learning for Atrial Fibrillation Detection: Efficient Models for Wearable Devices”, Ing. Inv., vol. 45, no. 1, p. e114530, Mar. 2025.

MLA

Fajardo, C. A., A. S. Parra, and T. V. Castellanos-Parada. “Lightweight Deep Learning for Atrial Fibrillation Detection: Efficient Models for Wearable Devices”. Ingeniería e Investigación, vol. 45, no. 1, Mar. 2025, p. e114530, doi:10.15446/ing.investig.114530.

Turabian

Fajardo, Carlos A., Andrés S. Parra, and Tania V. Castellanos-Parada. “Lightweight Deep Learning for Atrial Fibrillation Detection: Efficient Models for Wearable Devices”. Ingeniería e Investigación 45, no. 1 (March 31, 2025): e114530. Accessed December 26, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/114530.

Vancouver

1.
Fajardo CA, Parra AS, Castellanos-Parada TV. Lightweight Deep Learning for Atrial Fibrillation Detection: Efficient Models for Wearable Devices. Ing. Inv. [Internet]. 2025 Mar. 31 [cited 2025 Dec. 26];45(1):e114530. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/114530

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Yash Akbari, Ningrong Lei, Nilesh Patel, Yonghong Peng, Oliver Faust. (2025). Atrial Fibrillation Detection on the Embedded Edge: Energy-Efficient Inference on a Low-Power Microcontroller. Sensors, 25(21), p.6601. https://doi.org/10.3390/s25216601.

Dimensions

PlumX

Article abstract page views

308

Downloads

Download data is not yet available.