Published
Activation of Coal Fly Ash for Cadmium Wastewater Remediation
Activación de ceniza volante de carbón para la remediación de aguas residuales contaminadas con cadmio
DOI:
https://doi.org/10.15446/ing.investig.114741Keywords:
coal fly ash, ultrasonic activation in alkaline mediums, cadmium wastewater remediation, pH effect, kinetics parameter estimation, Elovich isotherm (en)ceniza volante de carbón, activación con ultrasonido en medio alcalino, remediación de agua de desecho con cadmio, efecto de pH, estimación de parámetros cinéticos, isoterma de Elovich (es)
Downloads
Industrial wastewater contamination by heavy metals is a major environmental issue. Various techniques and materials have been proposed to address this problem, including those related to the adsorption process. However, new, improved, and low-cost materials must be developed and proposed in order for these strategies to be competitive. This study aims to investigate the remediation of water contaminated with cadmium, i.e., Cd(II), using activated coal fly ash, a low-cost sorbent, as it is the byproduct of an industrial process. Coal fly ash was chemically treated in acidic and alkaline mediums and activated using ultrasonic energy to enhance the materials and increase the uptake of Cd(II). Controlling the pH was found to be crucial, as the maximum sorption capacity occurred at pH 6. The materials activated in an alkaline medium with ultrasound were able to adsorb more significant amounts of Cd(II) under the studied experimental conditions and over four cycles of adsorption experiments. Finally, the kinetics of the adsorption process were analyzed, and some mathematical kinetics models were proposed to simulate the experimental data. After statistical discrimination, the Elovich isotherm was selected to represent the adsorption of Cd(II) in the different materials studied.
La contaminación de aguas residuales industriales por metales pesados es un problema medioambiental importante. Se han propuesto varias técnicas y materiales para abordar esta problemática, incluyendo aquellas relacionadas con el proceso de adsorción. No obstante, es necesario desarrollar y proponer materiales nuevos, mejorados y de bajo costo para que estas estrategias sean competitivas. Este estudio tiene como objetivo investigar la remediación de agua contaminada con cadmio, i.e., Cd(II), utilizando cenizas volantes de carbón activado, un sorbente de bajo costo, pues es un subproducto de un proceso industrial. Las cenizas volantes de carbón se trataron químicamente en medios ácidos y alcalinos y se activaron mediante energía ultrasónica para mejorar su capacidad de adsorción de Cd(II). El control del pH resultó crucial, ya que la máxima capacidad de adsorción se produjo a un pH de 6. Los materiales activados en medio alcalino mediante ultrasonido pudieron adsorber cantidades más significativas de Cd(II) bajo las condiciones experimentales estudiadas y en cuatro ciclos de adsorción. Finalmente, se analizó la cinética del proceso de adsorción y se propusieron algunos modelos cinéticos matemáticos para simular los datos experimentales. Después de una discriminación estadística, se seleccionó la isoterma de Elovich para representar la adsorción de Cd(II) en los diferentes materiales estudiados.
References
[1] T. El Rasafi et al., “Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strate-gies,” Crit. Rev. Environ. Sci. Technol., vol. 52, no. 5, pp. 675–726, Mar. 2022. https://doi.org/10.1080/10643389.2020.1835435
[2] Y. Huang, S. Mubeen, Z. Yang, and J. Wang, “Cadmium contamination in agricultural soils and crops,” in Theories and Methods for Minimizing Cadmium Pollution in Crops, Z. Yang, C. He, and J. Xin, Eds., Singapore: Springer Na-ture Singapore, 2022, pp. 1–30. https://doi.org/10.1007/978-981-16-7751-9_1
[3] U. Zulfiqar et al., “Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; A comprehensive review,” Front. Plant Sci., vol. 13, art. 773815, Mar. 2022. https://doi.org/10.3389/fpls.2022.773815
[4] M. Tunçtürk et al., “Safflower (Carthamus tinctorius L.) response to cadmium stress: Morpho-physiological traits and mineral concentrations,” Life, vol. 13, no. 1, art. 135, Jan. 2023. https://doi.org/10.3390/life13010135
[5] W. Fan et al., “The rhizosphere microbiome improves the adaptive capabilities of plants under high soil cadmium conditions,” Front. Plant Sci., vol. 13, art. 914103, Oct. 2022. https://doi.org/10.3389/fpls.2022.914103
[6] Y. Guo et al., “Copper and cadmium co-contamination affects soil bacterial taxonomic and functional attributes in paddy soils,” Environ. Pollut., vol. 329, art. 121724, Jul. 2023. https://doi.org/10.1016/j.envpol.2023.121724
[7] Q. Meng, T. Diao, L. Yan, and Y. Sun, “Effects of single and combined contamination of microplastics and cadmium on soil organic carbon and microbial commu-nity structural: A comparison with different types of soil,” Appl. Soil Ecol., vol. 183, art. 104763, Mar. 2023. https://doi.org/10.1016/j.apsoil.2022.104763
[8] N. Verma, R. Gill, K. Priya, and A. Kumar, “Plants and microbes assisted remediation of cadmium-contaminated soil,” in Hazardous and Trace Materials in Soil and Plants, M. Naeem, T. Aftab, A. A. Ansari, S. Singh Gill, and A. Macovei, Eds. Cambridge, MA, USA: Aca-demic Press, 2022, pp. 283–296. https://doi.org/10.1016/B978-0-323-91632-5.00008-2
[9] G. Genchi, M. S. Sinicropi, G. Lauria, A. Carocci, and A. Catalano, “The effects of cadmium toxicity,” Int. J. Envi-ron. Res. Public. Health, vol. 17, no. 11, art. 3782, May 2020. https://doi.org/10.3390/ijerph17113782
[10] I. Suhani, S. Sahab, V. Srivastava, and R. P. Singh, “Im-pact of cadmium pollution on food safety and human health,” Curr. Opin. Toxicol., vol. 27, pp. 1–7, Sep. 2021. https://doi.org/10.1016/j.cotox.2021.04.004
[11] K. Bhattacharyya et al., “Pathophysiological effects of cadmium(II) on human health-a critical review,” J. Basic Clin. Physiol. Pharmacol., vol. 34, no. 3, pp. 249–261, May 2023. https://doi.org/10.1515/jbcpp-2021-0173
[12] H. Thu Ha, T. Dinh Minh, and H. Minh Nguyet, “Applica-tion of green nanocomposite to adsorb cadmium ion in wastewater,” VNU J. Sci. Earth Environ. Sci., vol. 37, no. 1, Mar. 2021. https://doi.org/10.25073/2588-1094/vnuees.4564
[13] Y. Deng et al., “Purification and water resource circula-tion utilization of Cd-containing wastewater during mi-crobial remediation of Cd-polluted soil,” Environ. Res., vol. 219, art. 115036, Feb. 2023. https://doi.org/10.1016/j.envres.2022.115036
[14] M. Irfan, X. Liu, K. Hussain, S. Mushtaq, J. Cabrera, and P. Zhang, “The global research trend on cadmium in fresh-water: A bibliometric review,” Environ. Sci. Pollut. Res., vol. 30, no. 28, pp. 71585–71598, Apr. 2021. https://doi.org/10.1007/s11356-021-13894-7
[15] M. A. Irshad et al., “Green and eco-friendly synthesis of TiO2 nanoparticles and their application for removal of cadmium from wastewater: reaction kinetics study,” Z. Für Phys. Chem., vol. 236, no. 5, pp. 637–657, May 2022. https://doi.org/10.1515/zpch-2021-3171
[16] Z. Yuan et al., “Tracing anthropogenic cadmium emis-sions: From sources to pollution,” Sci. Total Environ., vol. 676, pp. 87–96, Aug. 2019. https://doi.org/10.1016/j.scitotenv.2019.04.250
[17] X. Zhao et al., “Effect and mechanisms of synthesis condi-tions on the cadmium adsorption capacity of modified fly ash,” Ecotoxicol. Environ. Saf., vol. 223, art. 112550, Oct. 2021. https://doi.org/10.1016/j.ecoenv.2021.112550
[18] H. Zhao et al., “Possibility of removing cadmium pollution from the environment using a newly synthesized material coal fly ash,” Environ. Sci. Pollut. Res., vol. 27, no. 5, pp. 4997–5008, Feb. 2020. https://doi.org/10.1007/s11356-019-07163-x
[19] X. Huang et al., “Optimization of preparation technology for modified coal fly ash and its adsorption properties for Cd2+,” J. Hazard. Mater., vol. 392, art. 122461, Jun. 2020. https://doi.org/10.1016/j.jhazmat.2020.122461
[20] R. Qiu, F. Cheng, and H. Huang, “Removal of Cd2+ from aqueous solution using hydrothermally modified circulat-ing fluidized bed fly ash resulting from coal gangue power plant,” J. Clean. Prod., vol. 172, pp. 1918–1927, Jan. 2018. https://doi.org/10.1016/j.jclepro.2017.11.236
[21] L. Ma et al., “Removal of cadmium from aqueous solu-tions using industrial coal fly ash-nZVI,” R. Soc. Open Sci., vol. 5, no. 2, art. 171051, Feb. 2018. https://doi.org/10.1098/rsos.171051
[22] B. Devi and H. P. Sarma, “Equilibrium isotherm and kinet-ic study of biosorption of cadmium from synthetic water using wastes leaves of Averrhoa carambola,” J. Appl. Nat. Sci., vol. 15, no. 2, pp. 826–843, Jun. 2023. https://doi.org/10.31018/jans.v15i2.4598
[23] S. Gupta, D. Garg, and A. Kumar, “Cadmium biosorption using Aloe. barbadensis Miller leaves waste powder treated with sodium bicarbonate,” Clean. Waste Syst., vol. 3, art. 100032, Dec. 2022. https://doi.org/10.1016/j.clwas.2022.100032.
[24] A. Rezaee and S. Ahmady-Asbchin, “Removal of toxic metal Cd (II) by Serratia bozhouensis CdIW2 using in moving bed biofilm reactor (MBBR),” J. Environ. Man-age., vol. 344, art. 118361, Oct. 2023. https://doi.org/10.1016/j.jenvman.2023.118361
[25] Y. Kim, K. Kim, H. H. Eom, X. Su, and J. W. Lee, “Electro-chemically-assisted removal of cadmium ions by redox active Cu-based metal-organic framework,” Chem. Eng. J., vol. 421, art. 129765, Oct. 2021. https://doi.org/10.1016/j.cej.2021.129765
[26] R. Rajumon, S. P. Aravind, S. Bhuvaneshwari, J. Ranjitha, and P. Mohanraj, “Removal of cadmium heavy metal ions from wastewater by electrosorption using modified activated carbon felt electrodes,” Water Sci. Technol., vol. 82, no. 7, pp. 1430–1444, Oct. 2020. https://doi.org/10.2166/wst.2020.425
[27] M. A. Salem and N. Majeed, “Removal of cadmium from industrial wastewater using electrocoagulation process,” J. Eng., vol. 26, no. 1, pp. 24–34, Dec. 2019. https://doi.org/10.31026/j.eng.2020.01.03
[28] M. M. Abou-Mesalam, M. R. Abass, E. S. Zakaria, and A. M. Hassan, “Metal doping silicates as inorganic ion ex-change materials for environmental remediation,” Sili-con, vol. 14, no. 13, pp. 7961–7969, Aug. 2022. https://doi.org/10.1007/s12633-021-01568-5
[29] Z. Qing, L. Guijian, P. Shuchuan, and Z. Chuncai, “The simultaneous removal of cadmium (II) and lead (II) from wastewater with the application of green synthesized magnesium silicate hydrate,” Front. Earth Sci., vol. 10, art. 1074687, Jan. 2023. https://doi.org/10.3389/feart.2022.1074687
[30] Y. Zalim, A. Benayada, and Z. El Ahmadi, “Cadmium removal from cadmium‐containing apatites by ion‐exchange reactions,” ChemistrySelect, vol. 7, no. 35, art. e202201862, Sep. 2022. https://doi.org/10.1002/slct.202201862
[31] V. Ponia, H. Kumar, S. Ishtiyaq, R. Goswami, and S. Bhadauria, “Remediation of cadmium ions from the con-taminated aqueous media by using dead biomass of Bacillus subtilis,” Int. J. Adv. Res., vol. 10, no. 05, pp. 344–359, May 2022. https://doi.org/10.21474/IJAR01/14715
[32] P. Chen, J. Wu, L. Li, Y. Yang, and J. Cao, “Modified fly ash as an effect adsorbent for simultaneous removal of heavy metal cations and anions in wastewater,” Appl. Surf. Sci., vol. 624, art. 157165, Jul. 2023. https://doi.org/10.1016/j.apsusc.2023.157165
[33] A.-E. Segneanu et al., “Highly efficient engineered waste eggshell-fly ash for cadmium removal from aqueous solu-tion,” Sci. Rep., vol. 12, no. 1, art. 9676, Jun. 2022. https://doi.org/10.1038/s41598-022-13664-6
[34] K. Singh, A. K. Singh, A. Kumar, and A. Agarwal, “Fly ash and TiO2 modified fly ash as adsorbing materials for re-moval of Cd(II) and Pb(II) from aqueous solutions,” J. Hazard. Mater. Adv., vol. 10, art. 100256, May 2023. https://doi.org/10.1016/j.hazadv.2023.100256
[35] N. B. Singh, A. Agarwal, A. De, and P. Singh, “Coal fly ash: An emerging material for water remediation,” Int. J. Coal Sci. Technol., vol. 9, no. 1, art. 44, Dec. 2022. https://doi.org/10.1007/s40789-022-00512-1
[36] V. K. Yadav, A. Amari, A. Gacem, N. Elboughdiri, L. B. Eltayeb, and M. H. Fulekar, “Treatment of fly-ash-contaminated wastewater loaded with heavy metals by using fly-ash-synthesized iron oxide nanoparticles,” Water, vol. 15, no. 5, art. 908, Feb. 2023. https://doi.org/10.3390/w15050908
[37] G. Buema et al., “Eco-friendly materials obtained by fly ash sulphuric activation for cadmium ions removal,” Ma-terials, vol. 13, no. 16, art. 3584, Aug. 2020. https://doi.org/10.3390/ma13163584
[38] Z. Hussain et al., “Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes,” J. Hazard. Mater., vol. 422, art. 126778, Jan. 2022. https://doi.org/10.1016/j.jhazmat.2021.126778
[39] A. Fernández-Jiménez, M. Monzó, M. Vicent, A. Barba, and A. Palomo, “Alkaline activation of metakaolin–fly ash mixtures: Obtain of Zeoceramics and Zeocements,” Microporous Mesoporous Mater., vol. 108, no. 1–3, pp. 41–49, Feb. 2008. https://doi.org/10.1016/j.micromeso.2007.03.024
[40] A. Purbasari, D. Ariyanti, and S. Sumardiono, “Prepara-tion and application of fly ash-based geopolymer for heavy metal removal,” presented at the 2nd Int. Conf. Chem. Process Prod. Eng., Semarang, Indonesia, 2020, art. 050006. https://doi.org/10.1063/1.5140918
[41] S. Boycheva, I. Marinov, S. Miteva, and D. Zgureva, “Conversion of coal fly ash into nanozeolite Na-X by ap-plying ultrasound assisted hydrothermal and fusion-hydrothermal alkaline activation,” Sustain. Chem. Pharm., vol. 15, art. 100217, Mar. 2020. https://doi.org/10.1016/j.scp.2020.100217
[42] R. Flores, “Kinetics studies on the process of zn removal from wastewater using ultrasonically activated sorbents,” Chem. Biochem. Eng. Q., vol. 31, no. 1, pp. 123–130, Apr. 2017. https://doi.org/10.15255/CABEQ.2015.2267
[43] B. Ileri and D. Sanliyuksel Yucel, “Metal removal from acid mine lake using ultrasound-assisted modified fly ash at different frequencies,” Environ. Monit. Assess., vol. 192, no. 3, art. 185, Mar. 2020. https://doi.org/10.1007/s10661-020-8150-4
[44] P. Kucharski, B. Białecka, and M. Thomas, “Removal of cadmium ions from polluted waters using low-cost ad-sorbents: process optimization study,” Desalination Water Treat., vol. 256, pp. 114–124, Apr. 2022. https://doi.org/10.5004/dwt.2022.28375
[45] T. T. Nguyen, T. M. L. P. Thi, T. N. Thi, T. T. Le, C. T. N. Thi, and N. H. Nguyen, “Adsorption optimization for the re-moval of cadmium in water by aluminum (hydr)oxide on cation exchange resin,” Curr. Appl. Sci. Technol., vol. 23, no. 2, Jul. 2022. https://doi.org/10.55003/cast.2022.02.23.012
[46] Y. Xu, H. Xia, Q. Zhang, G. Jiang, W. Cai, and W. Hu, “Adsorption of cadmium(II) in wastewater by magnesium oxide modified biochar,” Arab. J. Chem., vol. 15, no. 9, art. 104059, Sep. 2022. https://doi.org/10.1016/j.arabjc.2022.104059
[47] A. Chatterjee, X. Hu, and F. L.-Y. Lam, “Modified coal fly ash waste as an efficient heterogeneous catalyst for de-hydration of xylose to furfural in biphasic medium,” Fuel, vol. 239, pp. 726–736, Mar. 2019. https://doi.org/10.1016/j.fuel.2018.10.138
[48] N. Wang, L. Hao, J. Chen, Q. Zhao, and H. Xu, “Adsorp-tive removal of organics from aqueous phase by acid-activated coal fly ash: Preparation, adsorption, and Fen-ton regenerative valorization of ‘spent’ adsorbent,” Envi-ron. Sci. Pollut. Res., vol. 25, no. 13, pp. 12481–12490, May 2018. https://doi.org/10.1007/s11356-018-1560-y
[49] Z. Adamczyk, M. Cempa, and B. Białecka, “The influence of ultrasound on fly ash zeolitisation process efficiency,” Miner. Process. Extr. Metall. Rev., vol. 43, no. 4, pp. 427–439, May 2022. https://doi.org/10.1080/08827508.2021.1897585
[50] M. Echeverri-Aguirre, J. Molina, A. A. Hoyos-Montilla, H. H. Carvajal, and J. S. Rudas, “Heat flow modelling of the alkaline activation of fly ash with sodium hydroxide in the presence of portlandite,” Constr. Build. Mater., vol. 357, art. 129248, Nov. 2022. https://doi.org/10.1016/j.conbuildmat.2022.129248
[51] F. A. Al-Khaldi, B. Abu-Sharkh, A. M. Abulkibash, and M. A. Atieh, “Cadmium removal by activated carbon, car-bon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study,” Desalination Water Treat., vol. 53, no. 5, pp. 1417–1429, Feb. 2015. https://doi.org/10.1080/19443994.2013.847805
[52] K. Seffah, A. Zafour-Hadj-Ziane, A. T. Achour, J.-F. Guillet, P. Lonchambon, and E. Flahaut, “Adsorption of cadmi-um ions from water on double-walled carbon nano-tubes/iron oxide composite,” Chem. J. Mold., vol. 12, no. 2, pp. 71–78, Nov. 2017. https://doi.org/10.19261/cjm.2017.412
[53] S. K. Malpani and A. Rani, “A greener route for synthesis of fly ash supported heterogeneous acid catalyst,” Ma-ter. Today Proc., vol. 9, pp. 551–559, 2019. https://doi.org/10.1016/j.matpr.2018.10.375
[54] G. Buema et al., “Performance assessment of five adsor-bents based on fly ash for removal of cadmium ions,” J. Mol. Liq., vol. 333, art. 115932, Jul. 2021. https://doi.org/10.1016/j.molliq.2021.115932
[55] N. Mladenović Nikolić et al., “Adsorption efficiency of cadmium (ii) by different alkali-activated materials,” Gels, vol. 10, no. 5, art. 317, May 2024. https://doi.org/10.3390/gels10050317
[56] B. Çalışkan and E. Şayan, “A brief overview of the effects of ultrasound on the adsorption/desorption process: A review,” Int. J. Environ. Anal. Chem., vol. 104, no. 16, pp. 3821–3851, Dec. 2024. https://doi.org/10.1080/03067319.2022.2093641
[57] A. Mary Ealias and M. P. Saravanakumar, “A critical review on ultrasonic-assisted dye adsorption: Mass trans-fer, half-life and half-capacity concentration approach with future industrial perspectives,” Crit. Rev. Environ. Sci. Technol., vol. 49, no. 21, pp. 1959–2015, Nov. 2019. https://doi.org/10.1080/10643389.2019.1601488
[58] O. Dere Ozdemir and S. Piskin, “A novel synthesis method of zeolite x from coal fly ash: Alkaline fusion followed by ultrasonic-assisted synthesis method,” Waste Biomass Val-or., vol. 10, no. 1, pp. 143–154, Jan. 2019. https://doi.org/10.1007/s12649-017-0050-7
[59] F. A. Olabemiwo, B. S. Tawabini, F. Patel, T. A. Oyehan, M. Khaled, and T. Laoui, “Cadmium removal from con-taminated water using polyelectrolyte-coated industrial waste fly ash,” Bioinorg. Chem. Appl., vol. 2017, pp. 1–13, 2017. https://doi.org/10.1155/2017/7298351
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Yareli Ginalis Medina, Roberto Flores

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.










