Published
Simulation Model for Indirect Tensile Test of Asphalt Mixtures via Discrete Elements
Modelo de simulación de ensayos de tracción indirecta en mezclas asfálticas mediante elementos discretos
DOI:
https://doi.org/10.15446/ing.investig.116003Keywords:
Discrete element, indirect tensile strength test, asphalt materials, Brazilian test, road infrastructure (en)método de elementos discretos, ensayo de tracción indirecta, materiales asfálticos, ensayo brasileño, infraestructura vial (es)
Downloads
This paper describes the planning, development, programming, and validation of a computational model based on the discrete element method, which was implemented to simulate, considering specific mechanical parameters in two dimensions, the indirect tension on cylindrical specimens of asphalt mixtures. The proposed software was developed in the Visual Basic.Net programming language, aiming to generate source code and an execution environment that is user-friendly and easy to understand while allowing for improvements or adaptations. The indirect tensile strength test of the analyzed asphalt mixtures was approximated based on compression forces and diametral deformation relationships, according to the regulations of the Colombian National Road Institute. As a complement to this project, the computational model was validated, comparing its simulated results against experimental data on manufactured asphalt materials typically used for the road infrastructure of Colombia’s south-west. The simulated values fell within the order of magnitude and trend of the experimental results for the analyzed asphalt material, so it was concluded that the mathematical and computational model can reasonably replicate laboratory data.
Este artículo describe la planificación, el desarrollo, la programación y la validación de un modelo computacional basado en el método de elementos discretos, el cual fue implementado para simular, considerando parámetros mecánicos específicos en dos dimensiones, la tensión indirecta en especímenes cilíndricos de mezclas asfálticas. El software propuesto fue desarrollado en el lenguaje de programación Visual Basic.Net, con el propósito de generar un código fuente y un entorno de ejecución que fueran fáciles de usar y comprender, al tiempo que permitieran mejoras o adaptaciones. La resistencia a la tracción indirecta de las mezclas asfálticas analizadas se aproximó a partir de fuerzas de compresión y relaciones de deformación diametral, de acuerdo con la normativa del Instituto Nacional de Vías de Colombia. Como complemento de este proyecto, se validó el modelo computacional mediante la comparación de sus resultados simulados con datos experimentales de materiales asfálticos fabricados y típicamente empleados en la infraestructura vial del suroccidente colombiano. Los valores simulados se ubicaron dentro del mismo orden de magnitud y la misma tendencia de los resultados experimentales para el material asfáltico analizado, por lo que se concluyó que el modelo matemático y computacional puede replicar razonablemente los datos de laboratorio.
References
[1] O. Guerrero Bustamante, R. Camargo, J. Duque, G. Martinez Arguelles, R. Polo Mendoza, C. Acosta, and M. Murillo, “Designing sustainable asphalt pavement structures with a cement-treated base (CTB) and re-cycled concrete aggregate (RCA): A case study from a developing country,” Designs, vol. 9, no. 3, art. 65, 2025. https://doi.org/10.3390/designs9030065
[2] Corficolombiana S. A., “Infraestructura vial: retos y opor-tunidades ante el cambio climático,” Oct. 24, 2022. [Online]. Available: https://investigaciones.corfi.com/sostenibilidad/estudios-de-desarrollo-sostenible/infraestructura-vial-retos-y-oportunidades-ante-el-cambio-climatico/informe_1229539
[3] J. Duque, G. Martínez Arguelles, Y. Núñez, R. Peñabaena Niebles, and R. Polo Mendoza, “Designing climate change (cc)-resilient asphalt pavement structures: A comprehensive literature review on adaptation measures and advanced soil constitutive models,” Res. Eng., vol. 24, art. 103648, 2024. https://doi.org/10.1016/j.rineng.2024.103648
[4] Y. Li, Q. Wang, B. Liu, and Y. Tan, “Meso-structural model-ing of asphalt mixtures using computed tomography and discrete element method with indirect tensile testing,” Materials, vol. 18, no. 11, art. 2, 2025. https://doi.org/10.3390/ma18112566
[5] Y. Wei Lee, "Discrete element modelling of idealised asphalt mixture," PhD dissertation, University of Nottingham, 2006. [Online]. Available: https://www.nottingham.ac.uk/research/groups/ntec/documents/theses/yorkphdthesis.pdf
[6] O. K. Mahabadi, G. Grasselli, and A. Munjiza, "Numerical modelling of a Brazilian Disc test of layered rocks using the combined finite-discrete element method," in 3rd CANUS Rock Mech. Symp., Toronto, 2009, pp. 1-10.
[7] J. López, C. Romanel, and N. Valverde, "Simulación del fisuramiento en mezclas asfálticas por el método de elementos discretos," in XIV Pan-Am/CGS Geotech. Conf., Toronto, 2011. [Online]. Available: http://geoserver.ing.puc.cl/info/conferences/PanAm2011/panam2011/pdfs/GEO11Paper390.pdf
[8] G. Dondi, V. Vignali, M. Pettinari, F. Mazzotta, A. Simone and C. Sangiorgi, "Modeling the DSR complex shear modulus of asphalt binder using 3D discrete element approach," Constr. Build. Mater., vol. 54, pp. 236-246, Mar. 2014. https://doi.org/10.1016/j.conbuildmat.2013.12.005
[9] J. A. Leguizamo Echeverri and J. C. Vega Duarte, "Ob-tención de las leyes de fatiga por reflexión en mezclas asfálticas mediante el método de los Elementos Dis-cretos," MS thesis, Pontificia Universidad Javeriana, 2016. [Online]. Available: https://acortar.link/0rq1la
[10] H. Wang, B. Behnia, W. Buttlar, and H. Reis, "Develop-ment of two-dimensional micromechanical, viscoelas-tic, and heterogeneous-based models for the study of block cracking in asphalt pavements," Constr. Build Mater., vol. 244, pp. 2-12, May 2020. https://doi.org/10.1016/j.conbuildmat.2020.118146
[11] T. Man, J. Le, M. Marasteanu, and K. Hill, “Two-scale discrete element modeling of giratory compactation of hot asphalt," J. Eng. Mech., vol. 148, no. 2, pp. 1-10, 2021. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002033
[12] G. Zhao, Y. Liu, X. Wu, Z. Yan, and X. Lv, “Dynamic re-sponse of vehicle–road coupling with initial defects in asphalt pavements by discrete element method," Int. J. Solids Struct., vol. 323, art. 113617, 2025. https://doi-org.acceso.unicauca.edu.co/10.1016/j.ijsolstr.2025.113617
[13] R. Micaelo, N. Monteiro, and G. Câmara, “Mineral ag-gregates representation in discrete numerical model of bituminous mixture,” Lect. Notes Civil Eng., vol. 522, pp. 539-548, 2024. https://doi.org/10.1007/978-3-031-63588-5_51
[14] M. Xiao, Y. Chen, H. Feng, T. Huang, K. Xiong, and Y. Zhu, “Evaluation of fatigue behavior of asphalt field cores using discrete element modeling,” Mater., vol. 17, no. 13, pp. 1-15, 2024. https://doi.org/10.3390/ma17133108
[15] P. Zhao, S. Shi, W. Lu, S. Lv, Q. Chen, H. Duan, and Y. Yang, “Analysis of strength size effect and failure mechanism of asphalt mixtures based on discrete el-ement method,” Case Stud. Constr. Mater., vol. 21, art. e03482, 2024. https://doi.org/10.1016/j.cscm.2024.e03482
[16] B. Xue, Y. Que, J. Pei, X. Ma, D. Wang, Y. Yuan, and H. Zhang, “A state-of-the-art review of discrete element method for asphalt mixtures: Model generation meth-ods, contact constitutive models and application di-rections,” Constr. Build. Mater., vol. 414, art. 134842, 2024. https://doi.org/10.1016/j.conbuildmat.2023.134842
[17] G. Câmara, R. Micaelo, N. Monteiro Azevedo, and H. Silva, “Incremental viscoelastic damage contact models for asphalt mixture fracture assessment," Infra-structures, vol. 9, no. 7, pp. 1-31, 2024. https://doi.org//10.3390/infrastructures9070118
[18] D. X. Lu, N. H. T. Nguyen, and H. H. Bui, “A cohesive viscoelastic-elastoplastic-damage model for DEM and its applications to predict the rate- and time-dependent behaviour of asphalt concretes," Int. J. Plast., vol. 157, pp. 9-23, 2022. https://doi.org//10.1016/j.ijplas.2022.103391
[19] T. Ma, D. Zhang, Y. Zhang, S. Wang, and X. Huang, "Simu-lation of wheel tracking test for asphalt mixture using discrete element modelling," Road Mater. Pavement Des., vol. 19, no. 2, pp. 367-384, Dec. 2018. https://doi.org/10.1080/14680629.2016.1261725
[20] J. Chen, T. Pan, and X. Huang, "Discrete element model-ing of asphalt concrete cracking using a user-defined three-dimensional micromechanical approach," J. Wuhan Univ. Technol.-Mat. Sci. Edit., vol. 26, no. 6, pp. 1215-1221, Dec. 2011. https://doi.org/10.1007/s11595-011-0393-z
[21] W. Xianrong, H. Shangyu, and Z. Yunsheng, “Uniaxial compressive process simulation of geocell-reinforced asphalt mixture by discrete element,” Transp. Res. Rec. J. Trans. Res. Board, vol. 2678, no. 6, pp. 848-864, 2023. https://doi.org/10.1177/03611981231200229
[22] X. Wang, S. Han, H. Lv, H. Xie, and Y. Zhu, “DEM analysis of the effect of geocell on splitting tensile behavior of asphalt mixture based on multi-phase model,” Constr. Build Mater. vol. 411, art. 134567, 2024. https://doi.org/10.1016/j.conbuildmat.2023.134567
[23] T. Nian, J. Ge, M. Wang, and Y. Mao, "Improved discrete element numerical simulation and experiment on low-temperature anti-cracking performance of asphalt mix-ture based on PFC2D," Constr. Build Mater., vol. 283, art. 122792, 2021. https://doi.org/10.1016/j.conbuildmat.2021.122792
[24] Z. Zhang, H. Dan, H. Shan, and S. Li, “Investigation of particle rotation characteristics and compaction quality control of asphalt pavement using the discrete element method,” Mater., vol. 17, no. 11, art. 2764, 2024. https://doi.org/10.3390/ma17112764
[25] Invias and Mintransporte, "Especificaciones generales de construcción de carreteras," 2013. [Online]. Avail-able: https://www.invias.gov.co/index.php/informacion-institucional/139-documento-tecnicos/4570-especificaciones-generales-de-construccion-de-carreteras.
[26] P. A. Cundall and O. D. Strack, "A discrete numerical model for granular assemblies," Géotechnique, vol. 29, no. 1, pp. 47-65, 1979. https://scholar.google.com/citations?view_op=view_cita-tion&hl=en&user=4NZsMCwAAAAJ&citation_for_view=4NZsMCwAAAAJ:u5HHmVD_uO8C DOI: https://doi.org/10.1680/geot.1979.29.1.47
[27] C. Lun, D. Lau, and F. Nie, “A review on multiscale mod-eling of asphalt: Development and applications," Mul-tiscale Sci. Eng., vol. 4: pp. 10-27, 2022. https://doi.org/10.1007/s42493-022-00076-x
[28] C. A. Labra González, "Advances in the development of the discrete element method for excavation process-es," PhD dissertation, Departament de Resistència de Materials i Estructures a l'Enginyeria, Universitat Politèc-nica de Catalunya, 2012. [Online]. Available: https://upcommons.upc.edu/handle/2117/94984
[29] X. Ding, T. Ma, W. Zhang, D. Zhang, and T. Yin, "Effects by property homogeneity of aggregate skeleton on creep performance of asphalt concrete," Constr. Build Mater., vol. 171, pp. 205-213, May 2018. https://doi.org/10.1016/j.conbuildmat.2018.03.150
[30] X. Ai, J. Yi, Z. Pei, W. Zhou, and D. Feng, “Advances in discrete element modeling of asphalt mixture: A litera-ture review," Arch. Comp. Meth. Eng., vol. 31, pp. 4003-4029, 2024. https://doi.org/10.1007/s11831-024-10104-8
[31] Y. Zhang, T. Ma, X. Ding, T. Chen, X. Huang, and G. Xu, “Impacts of air-void structures on the rutting tests of asphalt concrete based on discretized emulation,” Constr. Build Mater., vol. 166, pp. 334-344, 2018. https://doi.org/10.1016/j.conbuildmat.2018.01.141
[32] G. Camara, R. Micalelo, and N. Moteiro Azevedo, “3D DEM model simulation of asphalt mastics with sunflower oil," Comp. Part. Mech., vol. 10, pp. 1569–1586, 2023. https://doi.org/10.1007/s40571-023-00574-1
[33] B. Xue, J. Pei, B. Zhou, J. Zhang, R. Li, and F. Gou, "Using random heterogeneous DEM model to simulate the SCB fracture behavior of asphalt concrete," Constr. Build Mater., vol. 236, pp. 1-10, 2020. https://doi.org/10.1016/j.conbuildmat.2019.117580
[34] P. Liu, J. Chen, G. Lu, D. Wang, M. Oeser, and S. Leischner, "Numerical simulation of crack propagation in flexible asphalt pavements based on cohesive zone model developed from asphalt mixtures," Materials, vol. 12, no. 8, art. 1278, 2019. https://doi.org/10.3390/ma12081278
[35] H. Dan, Z. Zhang, J. Chen, and W. Hao, “Numerical simu-lation of an indirect tensible test for asphalt mixtures using discrete element method software,” J. Mater. Civil Eng., vol. 30, no. 5, pp. 5-6, 2018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002252
[36] X. Du, L. Gao, F. Rao, H. Lin, H. Zhang, M. Sun, and X. Xu, “Damage Mechanism of Ultra-thin Asphalt Overlay (UTAO) based on Discrete Element Method", J Wuhan Univ. Tech., vol. 39, no. 2, pp. 476-478, 2024. https://doi.org//10.1007/s11595-024-2903-9
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
Dimensions
PlumX
Article abstract page views
Downloads
Funding data
License
Copyright (c) 2025 Diego Felipe Guerrero Torres, Lucio Gerardo Cruz Velasco

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.










