Published

2025-04-25

Development of a Solid Waste Collector Robot for Cleaning in Public Areas

Desarrollo de un robot recolector de residuos sólidos para limpieza en áreas públicas

DOI:

https://doi.org/10.15446/ing.investig.116237

Keywords:

IoT, Robotics, Waste Managment, Deep Learning, Mobilenet (en)
IoT, Rob´otica, Gesti´on de residuos, Aprendizaje profundo, Mobilenet (es)

Authors

Solid waste management reduces pollution, protects public health, conserves ecosystems, and promotes recycling and circular economies in a sustainable manner. This study analyzes the pollution issues caused by inefficient solid waste management in urban areas, highlighting its negative impact on the environment. In this vein, the T5R-bot collection robot was developed, designed through 3D printing and implemented with an artificial vision model for object detection based on the single shot multibox detector (SSD) and the MobileNetV2 neural network architecture. This system allows for the autonomous identification and collection of up to 12 types of debris, achieving an accuracy of 98% and a mAP of 97.81%. The methodology included the mechanical design of the robot with a rocker-bogie mechanism, ultrasonic sensors for navigation, and a robotic arm with four degrees of freedom. The model was trained with a dataset collected from 2890 images, demonstrating high efficiency in detecting and collecting waste in contaminated environments in public areas. The results confirm the viability of the robot as a tool for improving solid waste management. In addition, the future integration of segregation and adaptive learning capabilities is proposed.

La gestión de desechos sólidos reduce la contaminación, protege la salud pública, conserva los ecosistemas y fomenta el reciclaje y las economías circulares de manera sostenible. Este estudio analiza la problemática de la contaminación causada por la gestión ineficiente de desechos sólidos en áreas urbanas, destacando su impacto negativo en el medio ambiente. En este orden de ideas, se desarrolló el robot recolector T5R-bot, diseñado mediante impresión 3D e implementado con un modelo de visión artificial para la detección de objetos basado en el single shot multibox detector (SSD) y la arquitectura de red neuronal MobileNetV2. Este sistema permite la identificación y recolección autónoma de hasta 12 tipos de residuos, alcanzando una precisión del 98% y un mAP de 97.81%. La metodología incluyó el diseño mecánico del robot con un mecanismo \textit{rocker-bogie}, sensores ultrasónicos para navegación y un brazo robótico con cuatro grados de libertad. El modelo fue entrenado con un conjunto de datos recolectado a partir de 2890 imágenes, demostrando gran eficiencia en la detección y recolección de residuos en ambientes contaminados de áreas públicas. Los resultados confirman la viabilidad del robot como una herramienta para mejorar la gestión de residuos sólidos. Además, se propone la integración futura de capacidades de segregación y aprendizaje adaptativo.

References

[1] X. Li, D. Shi, Y. Li, and X. Zhen, "Impact of carbon regulations on the supply chain with carbon reduction effort," IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 6, pp. 1218−1227, Jun. 2019. https://doi.org/10.1109/TSMC.2017.2741670

[2] V. Meiler, J. Pfeiffer, L. Bifano, C. Kandlbinder Paret, and G. Fischerauer, "Approaches to detect microplastics in water using electrical impedance measurements and support vector machines," IEEE Sens. J., vol. 23, no. 5, pp. 4863−4872, Mar. 2023. https://doi.org/10.1109/JSEN.2023.3236375

[3] T. Mato and S. Noguchi, "Microplastic collection with ultra-high magnetic field magnet by magnetic separation," IEEE Trans. Appl. Supercond., vol. 32, no. 4, pp. 1−5, 2022. https://doi.org/10.1109/TASC.2021.3135796

[4] C. Schmidt, T. Krauth and S. Wagner, "Export of plastic debris by rivers into the sea," Environ. Sci. Technol., vol. 51, no. 21, pp. 12246−12253, 2017. https://doi.org/10.1021/acs.est.7b02368

[5] G. Castañeta, A. F. Gutiérrez, F. Nacaratte, and C. A. Manzano, "Microplastics: A contaminant that grows in all environmental areas, its characteristics and possible risks to public health from exposure," es, Rev. Boliv. Química, vol. 37, pp. 160−175, Dec. 2020, [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=9001749

[6] G. Vazquéz-Rodríguez, "Los microplásticos textiles (o la increíble historia de cómo tu suéter termina en el salero)," Ciencia, vol. 70, no. 1, pp. 56–63, 2019. https://www.revistaciencia.amc.edu.mx/images/revista/70_1/PDF/Microplasticos.pdf

[7] D. Aldana Aranda, E. Díaz, and V. Castillo Escalante, "El caribe y su contaminación por microplásticos," Ciencia, vol. 73, no. 2, pp.8–13, 2022. https://revistaciencia.amc.edu.mx/images/revista/73_2/PDF/03_73_2_1429_Microplasticos_Caribe.pdf

[8] P. Taboada-González, Q. Aguilar-Virgen, and S. E. Cruz-Sotelo, "Manejo y potencial de recuperación de residuos s ´olidos en una comunidad rural de México," Rev. Int. Contam. Ambient., vol. 29, pp. 43−48, 2013, [Online]. Available: https://www.revistascca.unam.mx/rica/index.php/rica/article/view/43517

[9] S. A. Mahfoodh, M. Aouad, I. Maki, R. Hdeib, and H. Mohamed, "Towards sustainable municipal solid waste management: Practical solutions to contain underground toxic gases from landfills," in Proc. ASU Int. Conf. Emerg. Technol. Sustain. Intell. Syst. (ICETSIS), 2024, pp. 444−450. https://doi.org/10.1109/ICETSIS61505.2024.10459548

[10] J. Bartra Gómez and J. M. Delgado Bardales, "Gestión de residuos sólidos urbanos y su impacto medioambiental," Cienc. Latina Rev. Cient. Multidiscip., vol. 4, no. 2, pp. 993−1008, Dec. 2020. https://doi.org/10.37811/cl_rcm.v4i2.135

[11] N. A. Zailan, M. M. Azizan, K. Hasikin, A. S. Mohd Khairuddin, and U. Khairuddin, "An automated solid waste detection using the optimized yolo model for riverine management," Front. Public Health, vol. 10, 2022. https://doi.org/10.3389/fpubh.2022.907280

[12] G. K. Ijemaru, L.-M. Ang, and K. P. Seng, "Swarm intelligence internet of vehicles approaches for opportunistic data collection and traffic engineering in smartcity waste management," Sensors, vol. 23, no. 5, art. 2860, 2023. https://doi.org/10.3390/s23052860

[13] G. Rahmanifar, M. Mohammadi, A. Sherafat, M. Hajiaghaei-Keshteli, G. Fusco, and C. Colombaroni, "Heuristic approaches to address vehicle routing problem in the iot-based waste management system," Expert Syst. Appl., vol. 220, art. 119708, 2023. https://doi.org/10.1016/j.eswa.2023.119708

[14] J. U. Rahman, A. Khan, J. I. Bangash, A. Khan, D. A. Ramli, and S. khan, "An efficient smart streamlet management system using internet of thing," in Proc. 26th Int. Conf. Knowledge-Based Intell. Inf. Eng. Syst. (KES2022), Procedia Comput. Sci., vol. 207, pp. 1743−1753, 2022. https://doi.org/10.1016/j.procs.2022.09.232

[15] B. Ramalingam, A. V. Le, Z. Lin, Z. Weng, R. E. Mohan, and S. Pookkuttath, "Optimal selective floor cleaning using deep learning algorithms and reconfigurable robot htetro," Sci. Rep., vol. 12, art. 15938, 2022. https://doi.org/10.1038/s41598-022-19249-7

[16] A. Vazhapilli Sureshbabu, N. M. Martins Pacheco, L. I. Duran Noy, and M. Zimmermann, "Design of an autonomous trash-picking service robot ocussed on human-robot interaction," Proc. Des. Soc., vol. 2, pp. 2523−2532, https://doi.org/10.1017/pds.2022.255

[17] W. Yang, J. Che, L. Zhang, and M. Ma, "Research of garbage salvage system based on deep learning," in Proc. Int. Conf. Comput. Appl. Inf. Secur. (ICCAIS), vol. 12260, SPIE, 2022, art. 1226014.

[18] P. R. Kshirsagar et al., "Artificial intelligence-based robotic technique for reusable waste materials," Comput. Intell. Neurosci., vol. 2022, art. 2073482, 2022. https://doi.org/10.1155/2022/2073482

[19] M. A. Rahman, F. Hasan, I. Akter, U. A. J. Sutapa, M. R. Shahriar, and K. M. S. Ibne Sayed, "Smart trash distribution, and recycling processes using iot sensing & mobile application," in Proc. 2nd Int. Conf. Comput. Advancements (ICCA), 2022, pp. 227−232. https://doi.org/10.1145/3542954.3542988

[20] X. Chen, "Machine learning approach for a circular economy with waste recycling in smart cities," Energy Rep., vol. 8, pp. 3127−3140, 2022. https://doi.org/10.1016/j.egyr.2022.01.193

[21] A. Stan, M. Margaritescu, A. M. E. Rolea, A. C. Dinu, V.-M. Zafiu, and D. M. Cotorobai, "Construction and control of an autonomous mobile robot for urban waste collection," Int. J. Mechatronics Appl. Mech., no. 10, pp. 24−31, 2021.

[22] A. S. Madhav, R. Rajaraman, S. Harini, and C. C. Kiliroor, "Application of artificial intelligence to enhance collection of e-waste: A potential solution for household weee collection and segregation in India," Waste Manage. Res., vol. 40, no. 7, pp. 1047−1053, 2022. https://doi.org/10.1177/0734242X211052846

[23] M. Kulshreshtha, S. S. Chandra, P. Randhawa, G. Tsaramirsis, A. Khadidos, and A. O. Khadidos, "Oatcr: Outdoor autonomous trash-collecting robot design using yolov4-tiny," Electronics, vol. 10, no. 18, art. 2292, 2021. https://doi.org/10.3390/electronics10182292

[24] Y. Irawan, H. Fonda, Yulisman, and Mardeni, "Garbage collecting ship robot using arduino uno microcontroller based on android smartphone," Int. J. Eng. Trends Technol., vol. 69, no. 6, pp. 25−30, 2021. https://doi.org/10.14445/22315381/IJETTV69I6P204

[25] A. Sánchez Moya and B. Rodríguez Rueda, "Desarrollo de plataforma autopiloto para robot subacuático," Ing. Electron., Autom. Comun., vol. 42, pp. 89−104, Apr. 2021. https://doi.org/10.14445/22315381/IJETTV69I6P204

[26] M. Arnett, Z. Luo, P. K. Paladugula, I. S. Cardenas, and J.-H. Kim, "Robots teaching recycling: Towards improving environmental literacy of children," in Proc. ACM/IEEE Int. Conf. Human-Robot Interact. (HRI), Cambridge, U.K., 2020, pp. 615−616. https://doi.org/10.1145/3371382.3379462

[27] X. Dong, "Research and design of marine trash classification robot based on color recognition," IOP Conf. Ser. Earth Environ. Sci., vol. 514, no. 3, art. 032043, May 2020. https://doi.org/10.1088/1755-1315/514/3/032043

[28] A. P. P. Prasetyo, Rendyansyah, S. D. Siswanti, S. Nurmaini, and Abdurahman, "Garbage collector robot (gacobot) design for dry waste distribution," J. Phys. Conf. Ser., vol. 1500, no. 1, art. 012103, Apr. 2020. https://doi.org/10.1088/1742-6596/1500/1/012103

[29] G. A. García-Rodríguez, B. A. Aguilar-Figueroa, P. A. Lucho, R. M. Woo-García, and F. López-Huerta, "Diseño e implementación de un robot recolector de residuos sólidos en playas," J. CIM Rev. Digit., vol. 8, no. Num.1, pp. 1220−1227, Oct. 2020. https://doi.org/10.5281/zenodo.6527784

[30] L. Chin, J. Lipton, M. C. Yuen, R. Kramer-Bottiglio, and D. Rus, "Automated recycling separation enabled by soft robotic material classification," in Proc. 2nd IEEE Int. Conf. Soft Robot. (RoboSoft), 2019, pp. 102−107. https://doi.org/10.1109/ROBOSOFT.2019.8722747

[31] H. N. Saha, S. Auddy, S. Pal, S. Kumar, S. Pandey, R. Singh, A. K., Singh, S. Banerjee, D. Ghosh, and S. Saha, "Waste management using internet of things (iot)," in Proc. 8th Annu. Ind. Autom. Electromech. Eng. Conf. (IEMECON), 2017, pp. 359−363. https://doi.org/10.1109/IEMECON.2017.8079623

[32] M. D. M. Poletto, P. R. Schneider, and A. J. Vania E. Zattera, "Urban solid waste management in Caxias do Sul/Brazil: Practices and challenges," J. Urban Environ. Eng., vol. 10, no. 1, pp. 50-56, 2016. https://doi.org/10.4090/juee.2016.v10n1.50-56

[33] E. Amasuomo and J. Baird, "The concept of waste and waste management," J. Manage. Sustainability, vol. 6, no. 4, pp. 88-96, 2016. https://doi.org/10.5539/jms.v6n4p88

[34] P. Andrés-Cano, J. A. Calvo-Haro, F. Fillat-Gomà, I. Andrés-Cano, and R. Pérez-Mananes, "Papel del cirujano ortopédico y traumatólogo en la impresión 3d: Aplicaciones actuales y aspectos legales para una medicina personalizada," Rev. Esp. Cir. Ortop. Traumatol., vol. 65, pp. 138−151, 2021. https://doi.org/10.1016/j.recot.2020.06.014

[35] J. -Y. Lee, J. An, and C. Kai Chua, "Fundamentals and applications of 3d printing for novel materials," Appl. Mater. Today, vol. 7, pp. 120−133, 2017. https://doi.org/10.1016/j.apmt.2017.02.004

[36] E. Jordan, "Mars science laboratory differential restraint: The devil is in the details," in Proc. 41st Aerosp. Mechanisms Symp., pp. 263−277. [Online]. Available: https://ntrs.nasa.gov/citations/20130003152

[37] J. W. Ugalde Vicuña, "Diseño de una pinza para el agarre de objetos," E-IDEA J. Eng. Sci., vol. 1, no. 2, pp. 54−68, Nov. 2020. https://revista.estudioidea.org/ojs/index.php/esci/article/view/67

[38] A. Khadatkar, A. P. Pandirwar, and V. Paradkar, "Design, development and application of a compact robotic transplanter with automatic seedling picking mechanism for plug-type seedlings," Sci. Rep., vol. 13, no. 1883, pp. 2045−2322, 2023. https://doi.org/10.1038/s41598-023-28760-4

[39] J. Yan, Y. Zhang, Z. Liu, J. Wang, J. Xu, and L. Yu, "Ultracompact single-nanowire-morphed grippers driven by vectorial lorentz forces for dexterous robotic manipulations," Nat. Commun., vol. 14, no. 3786, pp. 2041−1723, 2023. https://doi.org/10.1038/s41467-023-39524-z

[40] K. C. Bingham, M. Hessler, S. Lama, and T. Deemyad, "Design and implementation of a compliant gripper for form closure of diverse objects," Appl. Sci., vol. 13, no. 17, pp. 2076−3417, 2023. https://doi.org/10.3390/app13179677

[41] G. Lambropoulos, S. Mitropoulos, C. Douligeris, and L. Maglaras, "Implementing virtualization on single-board computers: A case study on edge computing," Computers, vol. 13, art. 54, 2024. https://doi.org/10.3390/computers13020054

[42] R. R. Ibarra García et al., "Vehículo aéreo no tripulado empleando hardware Raspberry Pi 3 para aplicación en monitoreo remoto," Pistas Educ., vol. 40, no. 130, pp. 1687–1707, Nov. 2018. https://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/1634

[43] S. Karthikeyan et al., "A systematic analysis on RaspberryPi prototyping: Uses, challenges, benefits, and drawbacks," IEEE Internet Things J., vol. 10, no. 16, pp. 14397−14417, Aug. 2023. https://doi.org/10.1109/JIOT.2023.3262942

[44] P. Patel, N. Gupta, and S. Gajjar, "Realtime voice recognition system using tiny ML on Arduino Nano 33 BLE," in Proc. IEEE Int. Symp. Smart Electron. Syst. (iSES), pp. 385−388. https://doi.org/10.1109/iSES58672.2023.00085

[45] Z. Ksira et al., "A novel embedded system for realtime fault diagnosis of photovoltaic modules," IEEE J. Photovoltaics, vol. 14, no. 2, pp. 354−362, 2024. https://doi.org/10.1109/JPHOTOV.2024.3359462

[46] N. I. Ramli, M. I. M. Rawi, and F. N. N. Rebuan, "Integrated smart home model: An IoT learning inspired platform," Int. J. Web-Based Learn. Teach. Technol., vol. 3, no. 1−14, Mar. 2022. https://doi.org/10.4018/IJWLTT.20220501.oa1

[47] M. Giriraj and P. Anvesh, "Controlling of servomotors according to pitch, yaw, and roll motions of accelerometer," in Proc. Int. Conf. Energy Eff. Technol. Sustain. (ICEETS), 2016, pp. 886−889. https://doi.org/10.1109/ICEETS.2016.7583873

[48] K. Singh, M. Mehndiratta, and M. Feroskhan, "Quadplus: Design, modeling, and receding-horizonbased control of a hyperdynamic quadrotor," IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 3, pp. 1766–1779, 2022. https://doi.org/10.1109/TAES.2021.3133314

[49] V. Quintero et al., "Baterias de ion litio: Características y aplicaciones," Rev. I+D Tecnol., vol. 17, no. 1, Jan. 2021. [Online]. Available: https://portal.amelica.org/ameli/jatsRepo/339/3392002003/index.html

[50] H. M. O. Canilang, A. C. Caliwag, and W. Lim, "Design of modular BMS and real-time practical implementation for electric motorcycle application," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 2, pp. 519–523, 2022. https://doi.org/10.1109/TCSII.2021.3093937

[51] C. Stansbury, "A general description of D-C digital voltmeters," Trans. Amer. Inst. Electr. Eng., Part I: Commun. Electron., vol. 80, no. 5, pp. 465–470, 1961. https://doi.org/10.1109/TCE.1961.6373002

[52] L. Chen, J. Guo, B. Zhu, and Z. Zhang, "Electronic nonlinearity of full-bridge PWM inverter for zero power PEMS system," IEEE Access, vol. 10, pp. 37670–37677, 2022. https://doi.org/10.1109/ACCESS.2022.3165307

[53] D. Y. Jaimes and F. Fajardo, "Caracterización de motores DC de imán permanente mediante un sistema motor-generador," Rev. Bras. Ensino Fís., vol. 44, art. e20220199, 2022. https://doi.org/10.1590/1806-9126-RBEF-2022-0199

[54] A. A. A. Ismail and A. Elnady, "Advanced drive system for DC motor using multilevel DC/DC buck converter circuit," IEEE Access, vol. 7, pp. 54167–54178, 2019. https://doi.org/10.1109/ACCESS.2019.2912315

[55] S. J. Chapman, Maquinas Eléctricas. México DF: México: McGraw-Hill, 2012.

[56] P. F. Proenca and P. Simoes, "TACO: Trash annotations in context for litter detection," arXiv:2003.06975, 2020. [Online]. Available: https://doi.org/10.48550/arXiv.2003.06975

[57] D. M. Chilukuri, S. Yi, and Y. Seong, "A robust object detection system with occlusion handling for mobile devices," Comput. Intell., vol. 38, no. 4, pp. 1338–1364, 2022. https://doi.org/10.1111/coin.12511

[58] Y. Li, H. Huang, Q. Xie, L. Yao, and Q. Chen, "Research on a surface defect detection algorithm based on MobileNet-SSD," Appl. Sci., vol. 8, no. 9, 2018. https://doi.org/10.3390/app8091678

How to Cite

APA

Díaz-Delgado, D. & Inga Alva, A. E. (2025). Development of a Solid Waste Collector Robot for Cleaning in Public Areas. Ingeniería e Investigación, 45(1), e116237. https://doi.org/10.15446/ing.investig.116237

ACM

[1]
Díaz-Delgado, D. and Inga Alva, A.E. 2025. Development of a Solid Waste Collector Robot for Cleaning in Public Areas. Ingeniería e Investigación. 45, 1 (Mar. 2025), e116237. DOI:https://doi.org/10.15446/ing.investig.116237.

ACS

(1)
Díaz-Delgado, D.; Inga Alva, A. E. Development of a Solid Waste Collector Robot for Cleaning in Public Areas. Ing. Inv. 2025, 45, e116237.

ABNT

DÍAZ-DELGADO, D.; INGA ALVA, A. E. Development of a Solid Waste Collector Robot for Cleaning in Public Areas. Ingeniería e Investigación, [S. l.], v. 45, n. 1, p. e116237, 2025. DOI: 10.15446/ing.investig.116237. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/116237. Acesso em: 17 may. 2025.

Chicago

Díaz-Delgado, Dick, and Alexander Eduardo Inga Alva. 2025. “Development of a Solid Waste Collector Robot for Cleaning in Public Areas”. Ingeniería E Investigación 45 (1):e116237. https://doi.org/10.15446/ing.investig.116237.

Harvard

Díaz-Delgado, D. and Inga Alva, A. E. (2025) “Development of a Solid Waste Collector Robot for Cleaning in Public Areas”, Ingeniería e Investigación, 45(1), p. e116237. doi: 10.15446/ing.investig.116237.

IEEE

[1]
D. Díaz-Delgado and A. E. Inga Alva, “Development of a Solid Waste Collector Robot for Cleaning in Public Areas”, Ing. Inv., vol. 45, no. 1, p. e116237, Mar. 2025.

MLA

Díaz-Delgado, D., and A. E. Inga Alva. “Development of a Solid Waste Collector Robot for Cleaning in Public Areas”. Ingeniería e Investigación, vol. 45, no. 1, Mar. 2025, p. e116237, doi:10.15446/ing.investig.116237.

Turabian

Díaz-Delgado, Dick, and Alexander Eduardo Inga Alva. “Development of a Solid Waste Collector Robot for Cleaning in Public Areas”. Ingeniería e Investigación 45, no. 1 (March 31, 2025): e116237. Accessed May 17, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/116237.

Vancouver

1.
Díaz-Delgado D, Inga Alva AE. Development of a Solid Waste Collector Robot for Cleaning in Public Areas. Ing. Inv. [Internet]. 2025 Mar. 31 [cited 2025 May 17];45(1):e116237. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/116237

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

25

Downloads

Download data is not yet available.