Published

2025-08-06

Influence of the Synthesis Route on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Nanoparticles

Influencia de la ruta de síntesis en las propiedades estructurales y magnéticas de nanopartículas de La0.7Sr0.3MnO3

DOI:

https://doi.org/10.15446/ing.investig.116281

Keywords:

ceramic synthesis, hyperthermia applications, manganites, Pechini synthesis, sol-gel synthesis (en)
aplicaciones de hipertermia, manganitas, síntesis cerámica, síntesis sol-gel, síntesis Pechini (es)

Downloads

Authors

Cancer is one of the leading causes of death worldwide, significantly impacting public health, with current treatment options that often have side effects on patients. In this context, magnetic hyperthermia emerges as a non-invasive alternative that utilizes magnetic nanoparticles to generate heat and destroy cancer cells. In this vein, this research sought to synthesize magnetic La0.7Sr0.3MnO3 (LSMO) nanoparticles in order to study the effect of the synthesis route on the production of nanoparticles with optimal properties for biomedical applications. LSMO samples were synthesized via the sol-gel, ceramic, and Pechini methods. These samples were characterized through X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM) in order to study their structure, morphology, and magnetic behavior. The nanoparticles obtained via the Pechini method exhibited the best crystalline structure, the smallest size, and reduced magnetic properties. This work allowed identifying the ceramic method as the synthesis route that produces nanoparticles suitable for biomedical applications, as demonstrated through the numerical calculation of the specific absorption rate (SAR). The results indicated that the SAR of nanoparticles synthesized using this method is 30 times greater than that of samples synthesized using the other two methods under equal field amplitude and frequency conditions.

El cáncer es una de las principales causas de muerte a nivel mundial y tiene un impacto significativo en la salud pública, con opciones de tratamiento actuales que suelen generar efectos secundarios en los pacientes. En este contexto, la hipertermia magnética surge como una alternativa no invasiva que utiliza nanopartículas magnéticas para generar calor y destruir células cancerígenas. Dado lo anterior, esta investigación buscó sintetizar nanopartículas magnéticas de La0.7Sr0.3MnO3 (LSMO) para estudiar el efecto de la ruta de síntesis en la producción de nanopartículas con propiedades óptimas para aplicaciones biomédicas. Las muestras de LSMO fueron sintetizadas mediante los métodos sol-gel, cerámico y Pechini. Estas muestras fueron caracterizadas mediante difracción de rayos X (XRD), dispersión de rayos X a bajo ángulo (SAXS), análisis termogravimétrico (TGA) y magnetometría de muestra vibrante (VSM), con el fin de estudiar su estructura, morfología y comportamiento magnético. Las nanopartículas obtenidas mediante el método Pechini presentaron la mejor estructura cristalina, el menor tamaño y propiedades magnéticas reducidas. Este trabajo permitió identificar el método cerámico como la ruta de síntesis que produce nanopartículas adecuadas para aplicaciones biomédicas, como se demostró mediante el cálculo numérico de la tasa específica de absorción (SAR). Los resultados indicaron que el SAR de las nanopartículas sintetizadas con este método es 30 veces mayor que el de las muestras sintetizadas mediante los otros dos métodos bajo iguales condiciones de amplitud de campo y frecuencia.

References

[1] N. D. Thorat, K. P. Shinde, S. H. Pawar, K. C. Barick, C. A. Betty, and R. S. Ningthoujam, “Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application,” Dalt. Trans., vol. 41, no. 10, art. 3060, 2012. https://doi.org/10.1039/c2dt11835a

[2] N. D. Thorat et al., “Highly water-dispersible surface-functionalized LSMO nanoparticles for magnetic fluid hyperthermia application,” New J. Chem., vol. 37, no. 9, art. 2733, 2013. https://doi.org/10.1039/c3nj00007a

[3] N. D. Thorat, V. M. Khot, A. B. Salunkhe, A. I. Prasad, R. S. Ningthoujam, and S. H. Pawar, “Surface functionalized LSMO nanoparticles with improved colloidal stability for hyperthermia applications,” J. Phys. D Appl. Phys., vol. 46, no. 10, art. 105003, Mar. 2013. https://doi.org/10.1088/0022-3727/46/10/105003

[4] K. Navin and R. Kurchania, “A comparative study of the structural, magnetic transport and electrochemical properties of La0.7Sr0.3MnO3 synthesized by different chemical routes,” Appl. Phys. A, vol. 126, no. 2, art. 100, Feb. 2020. https://doi.org/10.1007/s00339-019-3269-2

[5] P. V. Hendriksen, S. Linderoth, and P.-A. Lindgård, “Finite-size effects in the magnetic properties of ferromagnetic clusters,” J. Magn. Magn. Mater., vol. 104–107, pp. 1577–1579, Feb. 1992. https://doi.org/10.1016/0304-8853(92)91461-2

[6] R. E. Rosensweig, “Heating magnetic fluid with alternating magnetic field,” J. Magn. Magn. Mater., vol. 252, pp. 370–374, 2002. https://doi.org/http://dx.doi.org/10.1016/S0304-8853(02)00706-0

[7] M. B. Fernández van Raap, D. F. Coral, S. Yu, G. A. Muñoz, F. H. Sánchez, and A. Roig, “Anticipating hyperthermic efficiency of magnetic colloids using a semi-empirical model: A tool to help medical decisions,” Phys. Chem. Chem. Phys., vol. 19, no. 10, pp. 7176–7187, 2017. https://doi.org/10.1039/C6CP08059F

[8] M. Soleymani, M. Edrissi, and A. Mohammad Alizadeh, “Thermosensitive polymer-coated La 0.73 Sr 0.27 MnO3 nanoparticles: Potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems,” Polym. J., vol. 47, pp. 797–801, 2015. https://doi.org/10.1038/pj.2015.66

[9] B. T. Mai, S. Fernandes, P. B. Balakrishnan, and T. Pellegrino, “Nanosystems based on magnetic nanoparticles and thermo- or pH-responsive polymers: An update and future perspectives,” Acc. Chem. Res., vol. 51, no. 5, pp. 999–1013, May 2018. https://doi.org/10.1021/acs.accounts.7b00549

[10] M. Di Marco, C. Sadun, M. Port, I. Guilbert, P. Couvreur, and C. Dubernet, “Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents.,” Int. J. Nanomedicine, vol. 2, no. 4, pp. 609–22, 2007. http://www.ncbi.nlm.nih.gov/pubmed/18203428

[11] S. B. Somvanshi, P. B. Kharat, T. S. Saraf, S. B. Somwanshi, S. B. Shejul, and K. M. Jadhav, “Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19,” Mater. Res. Innov., vol. 25, no. 3, pp. 169–174, May 2020. https://doi.org/10.1080/14328917.2020.1769350

[12] A. Jordan et al., “Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia,” J. Magn. Magn. Mater., vol. 225, no. 1–2, pp. 118–126, Jan. 2001. https://doi.org/10.1016/S0304-8853(00)01239-7

[13] C. S. S. R. Kumar and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery,” Adv. Drug Deliv. Rev., vol. 63, no. 9, pp. 789–808, Aug. 2011. https://doi.org/10.1016/j.addr.2011.03.008

[14] N. D. Thorat et al. “Superparamagnetic gadolinium ferrite nanoparticles with controllable Curie temperature-cancer theranostics for MR-imaging-guided magneto-chemotherapy,” Eur. J. Inorg. Chem., vol. 2016, no. 28, pp. 4586–4597, Oct. 2016. https://doi.org/10.1002/ejic.201600706

[15] S. Lotfi, S. Bahari, A. Bahari, and M. Roudbari, “Magnetic performance and evaluation of radiofrequency hyperthermia of perovskite La1−xSrxMnO3,” J. Supercond. Nov. Magn., vol. 31, no. 7, pp. 2187–2193, Jul. 2018. https://doi.org/10.1007/s10948-017-4475-9

[16] T. N. Brusentsova, N. A. Brusentsov, V. D. Kuznetsov, and V. N. Nikiforov, “Synthesis and investigation of magnetic properties of Gd-substituted Mn–Zn ferrite nanoparticles as a potential low-TC agent for magnetic fluid hyperthermia,” J. Magn. Magn. Mater., vol. 293, no. 1, pp. 298–302, May 2005. https://doi.org/10.1016/j.jmmm.2005.02.023

[17] M. H. Ehsani, P. Kameli, M. E. Ghazi, F. S. Razavi, and M. Taheri, “Tunable magnetic and magnetocaloric properties of La0.6Sr0.4MnO3 nanoparticles,” J. Appl. Phys., vol. 114, no. 22, art. 223907, Dec. 2013. https://doi.org/10.1063/1.4846758

[18] R. T. Salakhova et al., “The frequency dependence of magnetic heating for La0.75Sr0.25MnO3 nanoparticles,” J. Magn. Magn. Mater., vol. 470, pp. 38–40, Jan. 2019. https://doi.org/10.1016/j.jmmm.2017.11.126

[19] R. Epherre et al., “Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route,” J. Mater. Chem., vol. 21, no. 12, art. 4393, 2011. https://doi.org/10.1039/c0jm03963b

[20] A. J. Campbell, G. Balakrishnan, M. R. Lees, D. McK. Paul, and G. J. McIntyre, “Single-crystal neutron-diffraction study of a structural phase transitioninduced by a magnetic field in La1-xSrxMnO3,” Phys. Rev. B, vol. 55, no. 14, pp. R8622–R8625, Apr. 1997. https://doi.org/10.1103/PhysRevB.55.R8622

[21] P. Y. Vanina, A. A. Naberezhnov, V. I. Nizhankovskii, and R. F. Mamin, “Temperature evolution of the magnetic properties of lanthanum-strontium manganites,” St. Petersbg. Polytech. Univ. J. Phys. Math., vol. 2, no. 3, pp. 175–180, Oct. 2016. https://doi.org/10.1016/j.spjpm.2016.08.001

[22] M. Eshraghi and P. Kameli, “Structural and magnetic properties of microwave assisted sol-gel synthesized La0.9Sr0.1MnO3 manganite nanoparticles,” ISRN Nanotechnol., vol. 2014, pp. 1–6, 2014. https://doi.org/10.1155/2014/867139

[23] L. Dimesso, “Pechini processes: An alternate approach of the sol–gel method, preparation, properties, and applications,” in Handbook of Sol-Gel Science and Technology, L. Klein, M. Aparicio, and A. Jitianu, Eds., Cham: Springer International Publishing, 2016, pp. 1–22. https://doi.org/10.1007/978-3-319-19454-7_123-1

[24] Y. Shlapa, S. Solopan, A. Belous, and A. Tovstolytkin, “Effect of synthesis method of La1-xSrxMnO3 manganite nanoparticles on their properties,” Nanoscale Res. Lett., vol. 13, no. 1, art. 13, Dec. 2018. https://doi.org/10.1186/s11671-017-2431-z

[25] M. Aneja, A. Tovstolytkin, and G.S. Lotey “Superparamagnetic LaSrMnO3 nanoparticles for magnetic nanohyperthermia and their biocompatibility,” J. Magn. Magnet. Mater., vol. 442, pp. 423-428. 2017. https://doi.org/10.1016/j.jmmm.2017.06.106

[26] N. K. Prasad, K. Rathinasamy, and D. Bahadur. "TC‐tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia," J. Biomed. Mater. Res. Part B App. Biomater., vol. 85B, pp. 409-416. 2007. https://doi.org/10.1002/jbm.b.30959

[27] A.B Tewari, R. Sharma, and D. Sharma. "Magnetic hyperthermia cancer therapy using rare earth metal-based nanoparticles: An investigation of Lanthanum strontium Manganite's hyperthermic properties," Res. Eng., vol. 20, art. 101537. 2023. https://doi.org/10.1016/j.rineng.2023.101537

[28] T. Wang et al., “Mechanochemical effects on microstructure and transport properties of nanocrystalline La0.8Na0.2MnO3 ceramics,” J. Alloys Comp., vol. 458, no. 1–2, pp. 248–252, Jun. 2008. https://doi.org/10.1016/j.jallcom.2007.04.023

[29] S. Daengsakul et al., “Magnetic and cytotoxicity properties of La1-xSrxMnO3 (0≤x≤0.5) nanoparticles prepared by a simple thermal hydro-decomposition,” Nanoscale Res. Lett., vol. 4, no. 8, pp. 839–845, Aug. 2009. https://doi.org/10.1007/s11671-009-9322-x

[30] P. Kameli, H. Salamati, and A. Aezami, “Effect of particle size on the structural and magnetic properties of La0.8Sr0.2MnO3,” J. Appl. Phys., vol. 100, no. 5, art. 053914, Sep. 2006. https://doi.org/10.1063/1.2345036

[31] P. Dey and T. K. Nath, “Enhanced grain surface effect on the temperature-dependent behavior of spin-polarized tunneling magnetoresistance of nanometric manganites,” Appl. Phys. Lett., vol. 87, no. 16, art. 162501, Oct. 2005. https://doi.org/10.1063/1.2089179

[32] A. O. Turky, M. M. Rashad, A. M. Hassan, E. M. Elnaggar, and M. Bechelany, “Optical, electrical and magnetic properties of lanthanum strontium manganite La1-x Sr x MnO3 synthesized through the citrate combustion method,” Phys. Chem. Chem. Phys., vol. 19, no. 9, pp. 6878–6886, 2017. https://doi.org/10.1039/C6CP07333F

[33] J. Mera, M. Mera, C. Cordoba, O. Paredes, and O. Morán, “La0.7Sr0.3MnO3 nanoparticles synthesized via the (Pechini) polymeric precursor method,” J. Supercond. Nov. Magn., vol. 26, no. 7, pp. 2553–2556, Jul. 2013. https://doi.org/10.1007/s10948-012-1570-9

[34] H. A. Reshi and V. Shelke, “Grain size induced metal-insulator transition in La0.7Sr0.3MnO3 compounds,” J. Nano- Electron. Phys., vol. 5, no. 4, art. 04053, 2013. https://jnep.sumdu.edu.ua/en/full_article/1131

[35] Z. Jirák, J. Kuličková, V. Herynek, M. Maryško, J. Koktan, and O. Kaman, “Titania-coated manganite nanoparticles: Synthesis of the shell, characterization and MRI properties,” J. Magn. Magn. Mater., vol. 427, pp. 245–250, Apr. 2017. https://doi.org/10.1016/j.jmmm.2016.10.097

[36] O. Glatter and O. Kratky, Small angle x-ray scattering. Cambridge, MA, USA: Academic Press, 1982.

[37] J. Kohlbrecher, “SASfit: A program for fitting simple structural models to small angle scattering data,” Paul Scherrer Institute, 2014. [Online]. Available: http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html

[38] M. H. Ehsani, M. E. Ghazi, and P. Kameli, “Effects of pH and sintering temperature on the synthesis and electrical properties of the bilayered LaSr2Mn2O7 manganite prepared by the sol–gel process,” J. Mater. Sci., vol. 47, no. 15, pp. 5815–5822, Aug. 2012. https://doi.org/10.1007/s10853-012-6481-4

[39] P. Vaqueiro and M. A. López-Quintela, “Influence of complexing agents and pH on yttrium−iron garnet synthesized by the sol−gel method,” Chem. Mater., vol. 9, no. 12, pp. 2836–2841, Dec. 1997. https://doi.org/10.1021/cm970165f

[40] A. Abreu, S. M. Zanetti, M. A. S. Oliveira, and G. P. Thim, “Effect of urea on lead zirconate titanate—Pb(Zr0.52Ti0.48)O3-nanopowders synthesized by the Pechini method,” J. Eur. Ceram. Soc., vol. 25, No. 5, pp. 743–748, Feb. 2005. https://doi.org/10.1016/j.jeurceramsoc.2004.02.021

[41] S. Daengsakul et al., “A simple thermal decomposition synthesis, magnetic properties, and cytotoxicity of La0.7Sr0.3MnO3 nanoparticles,” Appl. Phys. A, vol. 96, no. 3, pp. 691–699, Aug. 2009. https://doi.org/10.1007/s00339-009-5151-0

[42] T. Székely, G. Várhegyi, and F. Till. "The determination and use of the second derivative thermogravimetric function (DDTG) and the calculation of the kinetic constants of some decomposition reaction types," J. Therm. Analysis, vol. 5, pp. 227-237. 1973. https://doi.org/10.1007/bf01950371

[43] J. Gaitán-Álvarez et al., "Thermogravimetric, devolatilization rate, and differential scanning calorimetry analyses of biomass of tropical plantation species of Costa Rica torrefied at different temperatures and times," Energies, vol. 11, art. 696 2018. https://doi.org/10.3390/en11040696

[44] P. K. Yap et al., “Growth and magnetic behaviours of La0.7Sr0.3MnO3 nanoparticles synthesized via thermal treatment method,” Sains Malaysiana, vol. 48, no. 2, pp. 369–375, Feb. 2019. https://doi.org/10.17576/jsm-2019-4802-14

[45] H. Pfeiffer, “relaxation behaviour of magnetic particle assemblies due to thermal fluctuations,” Phys. Status Solidi, vol. 120, no. 1, pp. 233–245, Jul. 1990. https://doi.org/10.1002/pssa.2211200121

[46] C. P. Bean and J. D. Livingston, “Superparamagnetism,” J. Appl. Phys., vol. 30, no. 4, pp. S120–S129, 1959. https://doi.org/10.1063/1.2185850

[47] D. H. Manh, P. T. Phong, P. H. Nam, D. K. Tung, N. X. Phuc, and I.-J. Lee, “Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications,” Phys. B Condens. Matter, vol. 444, pp. 94–102, Jul. 2014. https://doi.org/10.1016/j.physb.2014.03.025

[48] E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci., vol. 240, no. 826, pp. 599–642, 1948. http://www.jstor.org/stable/91421 DOI: https://doi.org/10.1098/rsta.1948.0007

[49] J. Garcı́a-Otero, A, Garcı́a-Bastida, and J. Rivas, “Influence of temperature on the coercive field of non-interacting fine magnetic particles,” J. Magn. Magnet. Mater., vol. 189, no. 3, pp. 377–383, Nov. 1998. https://doi.org/10.1016/S0304-8853(98)00243-1

[50] O. Moscoso-Londoño et al., “Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems,” J. Magn. Magnet. Mater., vol. 428, 2017. https://doi.org/10.1016/j.jmmm.2016.12.019

[51] J.-L. Ortiz-Quiñonez, L. García-González, F. E. Cancino-Gordillo, and U. Pal, “Particle dispersion and lattice distortion induced magnetic behavior of La1-xSrxMnO3 perovskite nanoparticles grown by salt-assisted solid-state synthesis,” Mater. Chem. Phys., vol. 246, art. 122834, May 2020. https://doi.org/10.1016/j.matchemphys.2020.122834

[52] I. Radelytskyi et al., “Magnetic anisotropy of La0.7Sr0.3MnO3 nanopowders,” J. Magn. Magn. Mater., vol. 335, pp. 11–16, Jun. 2013. https://doi.org/10.1016/j.jmmm.2013.01.031

[53] A. D Souza, P. D. Babu, S. Rayaprol, M. S. Murari, L. D. Mendonca, and M. Daivajna, “Size control on the magnetism of La0.7Sr0.3MnO3,” J. Alloys Comp., vol. 797, pp. 874–882, Aug. 2019. https://doi.org/10.1016/j.jallcom.2019.05.004

[54] A. E. Berkowitz, W. J. Schuele, and P. J. Flanders, “Influence of crystallite size on the magnetic properties of acicular γ‐Fe2O3 particles,” J. Appl. Phys., vol. 39, no. 2, pp. 1261–1263, Feb. 1968. https://doi.org/10.1063/1.1656256

[55] W. Xia, Z. Pei, K. Leng, and X. Zhu, “Research progress in rare earth-doped perovskite manganite oxide nanostructures,” Nanoscale Res. Lett., vol. 15, no. 1, art. 9, Dec. 2020. https://doi.org/10.1186/s11671-019-3243-0

[56] P. V. Hendriksen, S. Linderoth, and P.-A. Lindgård, “Finite-size modifications of the magnetic properties of clusters,” Phys. Rev. B, vol. 48, no. 10, pp. 7259–7273, Sep. 1993. https://doi.org/10.1103/PhysRevB.48.7259

[57] D. F. Coral and J. A. Mera-Córdoba, Nanomedicine and Nanotechnology: Magnetic Nanoparticles Applications in Cancer Treatment (Nanotecnología y Medicina: Aplicaciones de Nanopartículas Magnéticas en el Tratamiento del Cáncer), 1st ed. Pasto, Colombia: Editorial CESMAG, 2018. https://doi.org/10.15658/CESMAG18.090101

How to Cite

APA

Mera Córdobba, J. A., Betancur-Pérez, J. F., Salazar-Henao, N. A., Galeano, L. A., Rosales-Rivera, A. & Coral-Coral, D. F. (2025). Influence of the Synthesis Route on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Nanoparticles. Ingeniería e Investigación, 45(1), e116281. https://doi.org/10.15446/ing.investig.116281

ACM

[1]
Mera Córdobba, J.A., Betancur-Pérez, J.F., Salazar-Henao, N.A., Galeano, L.A., Rosales-Rivera, A. and Coral-Coral, D.F. 2025. Influence of the Synthesis Route on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Nanoparticles. Ingeniería e Investigación. 45, 1 (Mar. 2025), e116281. DOI:https://doi.org/10.15446/ing.investig.116281.

ACS

(1)
Mera Córdobba, J. A.; Betancur-Pérez, J. F.; Salazar-Henao, N. A.; Galeano, L. A.; Rosales-Rivera, A.; Coral-Coral, D. F. Influence of the Synthesis Route on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Nanoparticles. Ing. Inv. 2025, 45, e116281.

ABNT

MERA CÓRDOBBA, J. A.; BETANCUR-PÉREZ, J. F.; SALAZAR-HENAO, N. A.; GALEANO, L. A.; ROSALES-RIVERA, A.; CORAL-CORAL, D. F. Influence of the Synthesis Route on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Nanoparticles. Ingeniería e Investigación, [S. l.], v. 45, n. 1, p. e116281, 2025. DOI: 10.15446/ing.investig.116281. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/116281. Acesso em: 25 dec. 2025.

Chicago

Mera Córdobba, Jenny Alejandra, Jhon F. Betancur-Pérez, Nicolás A. Salazar-Henao, Luis Alejandro Galeano, Andrés Rosales-Rivera, and Diego F. Coral-Coral. 2025. “Influence of the Synthesis Route on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Nanoparticles”. Ingeniería E Investigación 45 (1):e116281. https://doi.org/10.15446/ing.investig.116281.

Harvard

Mera Córdobba, J. A., Betancur-Pérez, J. F., Salazar-Henao, N. A., Galeano, L. A., Rosales-Rivera, A. and Coral-Coral, D. F. (2025) “Influence of the Synthesis Route on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Nanoparticles”, Ingeniería e Investigación, 45(1), p. e116281. doi: 10.15446/ing.investig.116281.

IEEE

[1]
J. A. Mera Córdobba, J. F. Betancur-Pérez, N. A. Salazar-Henao, L. A. Galeano, A. Rosales-Rivera, and D. F. Coral-Coral, “Influence of the Synthesis Route on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Nanoparticles”, Ing. Inv., vol. 45, no. 1, p. e116281, Mar. 2025.

MLA

Mera Córdobba, J. A., J. F. Betancur-Pérez, N. A. Salazar-Henao, L. A. Galeano, A. Rosales-Rivera, and D. F. Coral-Coral. “Influence of the Synthesis Route on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Nanoparticles”. Ingeniería e Investigación, vol. 45, no. 1, Mar. 2025, p. e116281, doi:10.15446/ing.investig.116281.

Turabian

Mera Córdobba, Jenny Alejandra, Jhon F. Betancur-Pérez, Nicolás A. Salazar-Henao, Luis Alejandro Galeano, Andrés Rosales-Rivera, and Diego F. Coral-Coral. “Influence of the Synthesis Route on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Nanoparticles”. Ingeniería e Investigación 45, no. 1 (March 31, 2025): e116281. Accessed December 25, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/116281.

Vancouver

1.
Mera Córdobba JA, Betancur-Pérez JF, Salazar-Henao NA, Galeano LA, Rosales-Rivera A, Coral-Coral DF. Influence of the Synthesis Route on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Nanoparticles. Ing. Inv. [Internet]. 2025 Mar. 31 [cited 2025 Dec. 25];45(1):e116281. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/116281

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

179

Downloads

Download data is not yet available.