Published

2025-08-31

Empirical Models for the Shear Capacity and Stiffness of X-Shaped Screw Connections in Timber-Concrete Composite Structures

Modelos empíricos de resistencia al cortante y rigidez para conexiones de tornillos en X en estructuras compuestas de madera-concreto

DOI:

https://doi.org/10.15446/ing.investig.116327

Keywords:

timber-concrete composite structures, timber structures, timber connections (en)
estructuras compuestas de madera y concreto, estructuras de madera, conexiones de madera (es)

Authors

In the literature, experimental data on X-shaped screw connections have been analyzed in order to develop an empirical model for their shear force capacity and stiffness, which are important parameters in designing timber-concrete composite structures. Although considerable research has been conducted worldwide to understand the composite action of timber and concrete, there is no generic model for determining the shear force capacity and stiffness of screw connections; most of the existing models are based on theoretical derivations. In this paper, empirical models are derived to determine the shear capacity of screw connections installed in X-shaped arrangements, considering the embedment and withdrawal strength of the screws within the timber and concrete. Moreover, a stiffness model based on global flexibility, as influenced by the material properties of timber, concrete, and screws, is elaborated. The model is validated using existing push-pull data and variations in material properties. A comparison with a well-known model demonstrates the suitability of our proposal. This model can be used to predict the shear force capacity and stiffness of X-shaped screw connections in timber-concrete composite structures.

En la literatura se han analizado datos experimentales sobre las uniones con tornillos en X, a fin de desarrollar un modelo empírico de su resistencia al cortante y rigidez, parámetros importantes en el diseño de estructuras compuestas de madera-concreto. Aunque se ha llevado a cabo una cantidad considerable de investigaciones a nivel mundial para comprender la acción compuesta de la madera y el concreto, no existe un modelo genérico para determinar la resistencia al cortante y la rigidez de las uniones con tornillos; la mayoría de los modelos existentes se basan en derivaciones teóricas. En este trabajo se derivan modelos empíricos para determinar la resistencia al cortante de las uniones con tornillos en X, considerando la resistencia al empotramiento y al arranque de los tornillos en la madera y el concreto. Además, se elabora un modelo de rigidez basado en la flexibilidad global, influenciada por las propiedades de los materiales de la madera, el concreto y los tornillos. El modelo se valida utilizando datos experimentales de ensayos push-pull y variaciones en las propiedades de los materiales. Una comparación con un modelo reconocido demuestra la idoneidad de nuestra propuesta. Este modelo puede emplearse para predecir la resistencia al cortante y la rigidez de las uniones con tornillos en X en estructuras compuestas de madera-concreto.

References

[1] F. Moshiri, R. Shrestha, and K. Crews, “The predictive model for stiffness of inclined screws as shear connection in timber-concrete composite floor,” in Materials and Joints in Timber Structures, S. Aicher, H. W. Reinhardt, and H. Garrecht, Eds. Dordrecht, Netherlands: Springer, 2014, pp. 443–453. https://doi.org/10.1007/978-94-007-7811-5_40

[2] A. Ogrin and T. Hozjan, “Timber-concrete composite structural elements,” Engineered Wood Products for Con-struction, M. Gong, Ed. London, UK: IntechOpen, 2022. https://doi.org/10.5772/intechopen.99624

[3] A. Pogoreltsev, S. Turkovsky, and V. Stoyanov, “Rigid joints on glued-in rods of bending and compression-bending el-ements of large-span laminated timber structures,” in World Conf. Timber Eng. (WCTE 2023), 2023, pp. 4201–4208. https://doi.org/10.52202/069179-0546

[4] J. Estévez-Cimadevila, E. Martín-Gutiérrez, F. Suárez-Riestra, D. Otero-Chans, and J. A. Vázquez-Rodríguez, “Timber-concrete composite structural flooring system,” J. Build. Eng., vol. 49, art. 104078, 2022. https://doi.org/10.1016/j.jobe.2022.104078

[5] A. Romero, J. Yang, F. Hanus, H. Degée, and C. Odenbreit, “Push-out tests on connections for demount-able and reusable steel-timber composite beam and flooring systems,” World Conf. Timber Eng. (WCTE 2023), 2023, pp. 3568–3574. https://doi.org/10.52202/069179-0464

[6] V. Bajzecerova, M. Kovac, and J. Kanocz, “Structural analysis of cross-laminated timber slabs subjected to bending – State of the art,” Select. Sci. Papers J. Civil Eng., vol. 13, no. 1, pp. 133–140, 2018. https://doi.org/10.1515/sspjce-2018-0027

[7] H. Du, X. Hu, Z. Sun, and W. Fu, “Shear stiffness of inclined screws in timber–concrete composite beam with timber board interlayer,” Adv. Struct. Eng., vol. 23, no. 16, pp. 3555–3565, 2020. https://doi.org/10.1177/1369433220940814

[8] V. S. Pham, “Shear behavior of different connections for cross-laminated timber-concrete composite floor,” 2022. [Online]. Available: https://doi.org/10.2139/ssrn.4229164

[9] M. W. Hammad, H. R. Valipour, and S. J. Foster, “Timber-concrete composites (TCC) floors subjected to hogging moment,” Eng. Struct., vol. 303, art. 117488, 2024. https://doi.org/10.1016/j.engstruct.2024.117488

[10] J. Pyykkö and S. Svensson, “Load-bearing capacity of slender dowel-type fasteners in Timber-Concrete Compo-site connections,” Eng. Struct., vol. 316, art. 118556, 2024. https://doi.org/10.1016/j.engstruct.2024.118556

[11] R. Hassan, A. Ibrahim, and Z. Ahmad, “Load-carrying capacity of timber joints,” in Timber Connections. Singa-pore: Springer, 2023, pp. 43–52. https://doi.org/10.1007/978-981-19-2697-6_4

[12] Z. Tekic, and S. Djordjevic, “Experimental determination of load bearing capacity of connections realized by punched metal plate fastener,” Tehnika, vol. 69, no. 5, pp. 735–741, 2014. https://doi.org/10.5937/tehnika1405735t

[13] R. Tomasi, A. Crosatti, M. Piazza, “Theoretical and experi-mental analysis of timber-to-timber joints connected with inclined screws,” Const. Build. Mater., vol. 24, no. 9, pp. 1560–1571, 2010. https://doi.org/10.1016/j.conbuildmat.2010.03.007

[14] S. Esmaeildoust, D. Tomlinson, and Y. H. Chui. "Performance of Timber-Concrete Composite (TCC) Systems Connected with Inclined Screws: A Literature Review,” J. Comp. Sci., vol 9, no. 1, art. 13, 2025. https://doi.org/10.3390/jcs9010013

[15] I. B. Johari, M. A. B. Mohd Snin, S. F. B. Senin, and M. R. B. Mohamad Rashid, “Screw connection systems in timber-concrete composite structures: A literature review,” Tehnički Vjesnik, vol. 30, no. 4, pp. 1336–1346, 2023. https://doi.org/10.17559/TV-20220820075553

[16] I. Bejtka, and H. J. Blaß, “Joints with inclined screws,” presented at Meet. 35 Int. Coun. Build Res. Stud. Doc., Kyoto, Japan, 2002.

[17] X. Sun, Z. Gan, Z. Li and M. He, “Shear performance of inclined crossing screws for nail-laminated timber-concrete composite floor with an OSB interlayer,” Const. Build. Mater., vol. 458, art. 139621, 2025. https://doi.org/10.1016/j.conbuildmat.2024.139621

[18] M. Zeman, P. Sejkot, K. Mikes, M. Fragiacomo, and A. Aloisio, “Glued-in steel plate and screwed connections in timber–concrete composites systems: Mechanical per-formance and design implications,” J. Build. Eng., vol. 96, art. 110477, 2024. https://doi.org/10.1016/j.jobe.2024.110477

[19] CEN, Eurocode 5: Design of timber structures – Part 1-1: General – Common rules and rules for buildings (EN 1995-1-1:2021). Brussels, Belgium: European Committee for Standardization, 2021.

[20] G. He, H. Xiao, L. Chen, and L. Li, “The performance study of notch-stud connections of timber-concrete composite beam: The performance study of notch-stud connections of timber-concrete composite beam,” in Adv. Energy En-viron. Mater. Sci. Proc. 2nd Int. Conf. Energy Environ. Ma-teri. Sci. (EEMS 2016), 2016, pp. 475–479.

[21] M. Molina Herrera and X. F. Hurtado Amézquita, “Formu-lating a design for a screw-type shear connector in a composite section,” Ing. Investig., vol. 31, no. 2, pp. 52–64, 2011. https://doi.org/10.15446/ing.investig.v31n2.23465

[22] J. Skinner, J. Bregulla, R. Harris, K. Paine, and P. Walker, “Screw connectors for thin topping, timber–concrete composites,” Mater. Struct., vol. 47, no. 11, pp. 1891–1899, 2013. https://doi.org/10.1617/s11527-013-0158-6

[23] W. M. Sebastian, J. Mudie, G. Cox, M. Piazza, R. Tomasi, and I. Giongo, “Insight into mechanics of externally inde-terminate hardwood–concrete composite beams,” Const. Build. Mater., vol. 102, pp. 1029–1048, 2016. https://doi.org/10.1016/j.conbuildmat.2015.10.015

[24] M. A. Mohd Snin, and M. M. Kassem, “Novel use of scan-ning methods to investigate the performance of screw connections in timber-concrete composite structures,” Adv. Civil Eng., vol. 2023, art. 4176805, 2023. https://doi.org/10.1155/2023/4176805

[25] A. M. Harte, “Introduction to timber as an engineering material,” in ICE Manual of Construction Materials, M. Forde, Ed. Leeds, UK: Emerald Publishing Limited, 2009, vol. 2, pp. 707–716. https://doi.org/10.1680/mocm.35973

[26] CEN, Eurocode 2: design of concrete structures. Part 2, Concrete bridges: design and detailing rules. Singapore: Springer Singapore, 2012.

[27] P. Gelfi, E. Giuriani, and A. Marini, “Stud shear connection design for composite concrete slab and wood beams,” J. Struct. Eng., vol. 128, no. 12, pp. 1544–1550, 2002. https://doi.org/10.1061/(asce)0733-9445(2002)128:12(1544)

[28] L. Marchi, R. Scotta, and L. Pozza, “Experimental and theoretical evaluation of TCC connections with inclined self-tapping screws,” Mater. Struct., vol. 50, no. 3, art 180, 2017. https://doi.org/10.1617/s11527-017-1047-1

[29] H. Du, X. Hu, Z. Xie, and H. Wang, “Study on shear behav-ior of inclined cross lag screws for glulam-concrete com-posite beams,” Const. Build. Mater., vol. 224, pp. 132–143, 2019. https://doi.org/10.1016/j.conbuildmat.2019.07.035

[30] M. A. Mirdad and Y. H. Chui, “Load-slip performance of Mass Timber Panel-Concrete (MTPC) composite connec-tion with Self-tapping screws and insulation layer,” Const. Build. Mater., vol. 213, pp. 696–708, 2019. https://doi.org/10.1016/j.conbuildmat.2019.04.117

[31] F. Moshiri, C. Gerber, H. Valipour, R. Shrestha, and K. Crews, “The predictive model for strength of inclined screws as shear connection in timber-concrete compo-site floor,” in Proc. 22nd Australasian Conf. Mech. Struct. Mater. (ACMSM 2012), 2013, pp. 1059–1064. https://espace.library.uq.edu.au/view/UQ:0560957

[32] A. Ceccotti, “Composite concrete-timber structures,” Prog. Struct. Eng. Mater., vol. 4, no. 3, pp. 264–275, 2002. https://doi.org/10.1002/pse.126

How to Cite

APA

Bin Mohd Snin, M. A., Ghazali, A. H. & Haolin, D. (2025). Empirical Models for the Shear Capacity and Stiffness of X-Shaped Screw Connections in Timber-Concrete Composite Structures. Ingeniería e Investigación, 45(2), e116327. https://doi.org/10.15446/ing.investig.116327

ACM

[1]
Bin Mohd Snin, M.A., Ghazali, A.H. and Haolin, D. 2025. Empirical Models for the Shear Capacity and Stiffness of X-Shaped Screw Connections in Timber-Concrete Composite Structures. Ingeniería e Investigación. 45, 2 (Aug. 2025), e116327. DOI:https://doi.org/10.15446/ing.investig.116327.

ACS

(1)
Bin Mohd Snin, M. A.; Ghazali, A. H.; Haolin, D. Empirical Models for the Shear Capacity and Stiffness of X-Shaped Screw Connections in Timber-Concrete Composite Structures. Ing. Inv. 2025, 45, e116327.

ABNT

BIN MOHD SNIN, M. A.; GHAZALI, A. H.; HAOLIN, D. Empirical Models for the Shear Capacity and Stiffness of X-Shaped Screw Connections in Timber-Concrete Composite Structures. Ingeniería e Investigación, [S. l.], v. 45, n. 2, p. e116327, 2025. DOI: 10.15446/ing.investig.116327. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/116327. Acesso em: 8 nov. 2025.

Chicago

Bin Mohd Snin, Mohd Amirul, Anis Hanim Ghazali, and Deng Haolin. 2025. “Empirical Models for the Shear Capacity and Stiffness of X-Shaped Screw Connections in Timber-Concrete Composite Structures”. Ingeniería E Investigación 45 (2):e116327. https://doi.org/10.15446/ing.investig.116327.

Harvard

Bin Mohd Snin, M. A., Ghazali, A. H. and Haolin, D. (2025) “Empirical Models for the Shear Capacity and Stiffness of X-Shaped Screw Connections in Timber-Concrete Composite Structures”, Ingeniería e Investigación, 45(2), p. e116327. doi: 10.15446/ing.investig.116327.

IEEE

[1]
M. A. Bin Mohd Snin, A. H. Ghazali, and D. Haolin, “Empirical Models for the Shear Capacity and Stiffness of X-Shaped Screw Connections in Timber-Concrete Composite Structures”, Ing. Inv., vol. 45, no. 2, p. e116327, Aug. 2025.

MLA

Bin Mohd Snin, M. A., A. H. Ghazali, and D. Haolin. “Empirical Models for the Shear Capacity and Stiffness of X-Shaped Screw Connections in Timber-Concrete Composite Structures”. Ingeniería e Investigación, vol. 45, no. 2, Aug. 2025, p. e116327, doi:10.15446/ing.investig.116327.

Turabian

Bin Mohd Snin, Mohd Amirul, Anis Hanim Ghazali, and Deng Haolin. “Empirical Models for the Shear Capacity and Stiffness of X-Shaped Screw Connections in Timber-Concrete Composite Structures”. Ingeniería e Investigación 45, no. 2 (August 1, 2025): e116327. Accessed November 8, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/116327.

Vancouver

1.
Bin Mohd Snin MA, Ghazali AH, Haolin D. Empirical Models for the Shear Capacity and Stiffness of X-Shaped Screw Connections in Timber-Concrete Composite Structures. Ing. Inv. [Internet]. 2025 Aug. 1 [cited 2025 Nov. 8];45(2):e116327. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/116327

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

366

Downloads

Download data is not yet available.

Funding data