Published

2025-06-19

Development of Auto-Injection Systems through the TRIZ Problem-Solving Method

Desarrollo de sistemas de autoinyección mediante el método de resolución de problemas TRIZ

DOI:

https://doi.org/10.15446/ing.investig.116402

Keywords:

syringe design, Ishikawa diagram, mechanical design and analysis, recyclable materials and sustainability (en)
diseño de jeringas, diagrama de Ishikawa, diseño y análisis mecánico, materiales reciclables y sostenibilidad, innovación en dispositivos médicos (es)

Downloads

Authors

This study presents a comprehensive approach to the redesign of auto-injection syringe systems, employing the TRIZ problem-solving framework along with Ishikawa analysis. The proposed design aims to address common challenges, including usability issues, high production costs, complex assembly procedures, and hygiene considerations. By leveraging the TRIZ methodology, this work successfully identified and addressed technical contradictions, leading to the development of an innovative auto-injection syringe. This design incorporates a recyclable polypropylene random copolymer, which not only reduces manufacturing costs but also promotes environmental sustainability. Replacing flexible springs with inexpensive rubber bands enhances the design's affordability and usability. This change lowers costs and improves user-friendliness, allowing patients to operate the system more easily while upholding performance standards. According to engineering validations carried out through static and dynamic simulations in NX Nastran, the design safely withstands up to 10 N of applied force, with its maximum stress levels remaining below 5.2 MPa, well within the material’s 27.5 MPa yield strength. While prior studies have reported ergonomic or functional improvements, they often lack a systematic engineering approach to address design contradictions. This study fills that gap by uniquely integrating the TRIZ and Ishikawa approaches to develop an optimized, user-friendly, and sustainable autoinjector. As a result, our new design meets user needs and adheres to the industry’s safety and efficacy standards. This research underscores the effectiveness of integrating the aforementioned methodologies to create practical and efficient solutions for patients requiring regular self-injection, thereby contributing to improved healthcare outcomes and a more sustainable medical device industry.

Este estudio presenta un enfoque integral para el rediseño de sistemas de jeringas autoinyectables, empleando el marco de resolución de problemas TRIZ junto con el análisis Ishikawa. El diseño propuesto busca abordar desafíos comunes, incluidos problemas de usabilidad, altos costos de producción, procedimientos de ensamblaje complejos y consideraciones de higiene. Aprovechando la metodología TRIZ, este trabajo logró identificar y resolver contradicciones técnicas, lo que condujo al desarrollo de una innovadora jeringa autoinyectable. Este diseño incorpora un copolímero aleatorio de polipropileno reciclable, lo cual no solo reduce los costos de fabricación, sino que también promueve la sostenibilidad ambiental. La sustitución de resortes flexibles por bandas elásticas económicas mejora la asequibilidad y la facilidad de uso del diseño. Este cambio reduce los costos y mejora la usabilidad, permitiendo que los pacientes operen el sistema con mayor facilidad sin comprometer los estándares de rendimiento. Según validaciones de ingeniería realizadas mediante simulaciones estáticas y dinámicas en NX Nastran, el diseño soporta hasta 10 N de fuerza aplicada de manera segura, con niveles máximos de tensión que se mantienen por debajo de los 5.2 MPa, muy por debajo del límite elástico del material, que es de 27.5 MPa. Si bien han reportado mejoras ergonómicas o funcionales, los estudios anteriores a menudo carecen de un enfoque sistemático de ingeniería para abordar contradicciones de diseño. Este estudio llena ese vacío al integrar de manera única los enfoques TRIZ e Ishikawa para desarrollar un autoinyector optimizado, fácil de usar y sostenible. Como resultado, nuestro nuevo diseño satisface las necesidades del usuario y cumple con los estándares de seguridad y eficacia de la industria. Esta investigación subraya la eficacia de integrar las metodologías mencionadas para crear soluciones prácticas y eficientes para pacientes que requieren autoinyecciones regulares, contribuyendo así a mejorar los resultados sanitarios y a una industria de dispositivos médicos más sostenible.

References

[1] P. Gangane, N. Mahajan, U. Ahajan, and S. Hiranwar, "De-livering biologics in prefilled syringes: an innovation in paren-teral packaging," Int. J. Pharm. Res. Technol., vol. 10, no. 1, 2020. https://doi.org/10.31838/ijprt/10.01.11

[2] S. Boccaletti et al., "Systematic literature review of asthma biologic self-administration enhanced by a patient perspec-tive," J. Allergy Clin. Immunol. Glob., vol. 3, no. 4, art. 100334, Aug. 2024. https://doi.org/10.1016/j.jacig.2024.100334

[3] J. Borrás-Blasco, R. A. García, S. Cornejo-Uixeda, M. Matellanes-Palacios, and E. Casterá-Melchor, "Patient prefer-ence after switching guselkumab from prefilled syringe to an autoinjection pen in psoriasis and psoriatic arthritis patients," Farm. Hosp., vol. 49, no. 3, pp. 160–163, Jul. 2024. https://doi.org/10.1016/j.farma.2024.07.002

[4] H. Forcinio, "Innovations in prefilled biologics," Pharm. Tech-nol., vol. 48, no. 4, pp. 24–27, Apr. 2024. [Online]. Available: https://www.pharmtech.com/view/innovations-in-prefilled-biologics

[5] S. Vermeire et al., "Preference for a prefilled syringe or an auto-injection device for delivering golimumab in patients with moderate-to-severe ulcerative colitis: a randomized crossover study," Patient Prefer. Adherence, vol. 12, pp. 1193-1202, Jul. 2018. https://doi.org/10.2147/ppa.s154181

[6] P. Dostál, J. Taubel, U. Lorch, V. Aggarwal, and T. York, "The reliability of auto-injectors in clinical use: a systematic review," Cureus, vol. 15, no. 7, art. e41601, Jul. 2023. https://doi.org/10.7759/cureus.41601

[7] B. Canaud et al., "Digital health support: current status and future development for enhancing dialysis patient care and empowering patients," Toxins, vol. 16, no. 5, art. 211, Apr. 2024. https://doi.org/10.3390/toxins16050211

[8] A. Selvaraj, A. Kulkarni, and J. M. Pearce, "Open-source 3-D printable autoinjector: design, testing, and regulatory limita-tions," PLoS ONE, vol. 18, no. 7, art. e0288696, Jul. 2023. https://doi.org/10.1371/journal.pone.0288696

[9] P. Kumar, S. Wang, and S. Kristensen, "EcoDesign for medical devices barriers and opportunities to eco-effective design of medical devices," MPhil thesis, Royal Coll. Art, London, UK, 2018. [Online]. Available: https://researchonline.rca.ac.uk/4467/1/MPhil%20Thesis%20-%20EcoDesign%20for%20Medical%20Devices%20(Deposit%20Version).pdf

[10] H. Singh et al., "Harnessing the foundation of biomedical waste management for fostering public health: strategies and policies for a clean and safer environment," Discov. Appl. Sci., vol. 6, art. 89, Feb. 2024. https://doi.org/10.1007/s42452-024-05735-2

[11] E. Moshkbid, D. E. Cree, L. Bradford, and W. Zhang, "Biode-gradable alternatives to plastic in medical equipment: cur-rent state, challenges, and the future," J. Compos. Sci., vol. 8, no. 9, art. 342, Sep. 2024. https://doi.org/10.3390/jcs8090342

[12] J. Vienken and C. Boccato, "Do medical devices contrib-ute to sustainability? The role of innovative polymers and de-vice design," Int. J. Artif. Organs, vol. 47, no. 4, pp. 240–250, Apr. 2024. https://doi.org/10.1177/03913988241245013

[13] Siemens, "Siemens NX | June 2023," Siemens Digital Ind. Softw., 2023. Accessed: Nov. 13, 2024. [Online]. Available: https://plm.sw.siemens.com/en-US/nx/news/latest-version-june-2023

[14] B. Quronfuleh, D. Sleath, and S. Rahimifard, "Circular econ-omy for medical devices: a case study of syringes," Procedia CIRP, vol. 122, pp. 449–454, 2024. https://doi.org/10.1016/j.procir.2024.01.065

[15] A. Antalfy et al., "The adherence and outcomes benefits of using a connected, reusable auto-injector for self-injecting biologics: a narrative review," Adv. Ther., vol. 40, no. 11, pp. 4758–4776, Sep. 2023. https://doi.org/10.1007/s12325-023-02671-2

[16] U. Müller-Ladner, C. Edwards, and A. Erkens, "International survey to evaluate current options for subcutaneous injection of methotrexate (MTX) and a new button-free MTX auto-injector," Patient Prefer. Adherence, vol. 18, pp. 579–590, Mar. 2024. https://doi.org/10.2147/ppa.s440818

[17] S. Karupppasamy, "A methodology to assess sustainability in medical device design," MS thesis, Patrick Power Library, Saint Mary's Univ., Halifax, NS, Canada, 2022. [Online]. Availa-ble: https://library2.smu.ca/handle/01/31260

[18] I. Bukhman, Technology for Innovation, 2021. [Online]. Available: https://books.google.com.tr/books?hl=tr&lr=&id=Sro1EAAAQBAJ&oi=fnd&pg=PR5&dq=I.+Bukhman

[19] A. Baptista et al., "Applying DMADV on the industrialization of updated components in the automotive sector: a case study," Procedia Manuf., vol. 51, pp. 1332–1339, 2020. https://doi.org/10.1016/j.promfg.2020.10.186

[20] P. Neves et al., "Implementing lean tools in the manufac-turing process of trimmings products," Procedia Manuf., vol. 17, pp. 696–704, 2018. https://doi.org/10.1016/j.promfg.2018.10.119

[21] T. Costa, F. J. G. Silva, and L. Pinto Ferreira, "Improve the extrusion process in tire production using Six Sigma methodol-ogy," Procedia Manuf., vol. 13, pp. 1104–1111, 2017. https://doi.org/10.1016/j.promfg.2017.09.171

[22] S. Elyoussoufi, M. Mazouzi, A. Cherrafi, and E. M. Tamasna, "TRIZ-ISHIKAWA diagram, a new tool for detecting influencing factors: a case study in HVAC business," in Proc. IEOM Soc. Int., Oct. 2022, pp. 3673–3680. [Online]. Available: https://ieomsociety.org/proceedings/2022istanbul/670.pdf

[23] Y. Akao, Quality Function Deployment, 2024. https://doi.org/10.4324/9781003578833

[24] F. Pakdil, Six sigma for students. Cham, Switzerland: Springer Int. Publ., 2020. https://doi.org/10.1007/978-3-030-40709-4

[25] D. D. Sheu, M.-C. Chiu, and D. Cayard, "The 7 pillars of TRIZ philosophies," Comput. Ind. Eng., vol. 146, art. 106572, Aug. 2020. https://doi.org/10.1016/j.cie.2020.106572

[26] K. Hmina et al., "TRIZ effect exploitation on engineering students thinking skills in product design," FME Trans., vol. 52, no. 2, pp. 271–278, 2024. https://doi.org/10.5937/fme2402271h

[27] V. Sojka, "Use of TRIZ, and TRIZ with other tools for process improvement: a literature review," Emerg. Sci. J., vol. 4, no. 5, art. 17, Jan. 2020. https://doi.org/10.28991/esj-2020-01234

[28] S. Guner and I. Kose, "Yaratıcı problem çözme tekniği TRIZ’in uygulama alanları: sağlık hizmetleri sektöründe kullanımı için öneriler," J. Econ. Bus. Finance Res., vol. 2, no. 2, pp. 185–205, Aug. 2020. https://doi.org/10.38009/ekimad.763538

[29] B. Karthika and A. R. Vijayakumar, "ISO 13485: Medical devices – quality management systems, requirements for regulatory purposes," in Medical Device Guidelines and Regu-lations Handbook P. S. Timiri Shanmugam, P. Thangaraju, N. Palani, and T. Sampath, Eds. Cham, Germany: Springer, 2022, pp. 19–29. https://doi.org/10.1007/978-3-030-91855-2_2

[30] M. Ghane et al., "TRIZ trend of engineering system evolu-tion: a review on applications, benefits, challenges and en-hancement with computer-aided aspects," Comput. Ind. Eng., vol. 174, art. 108833, Dec. 2022. https://doi.org/10.1016/j.cie.2022.108833

[31] R. Reshmy et al., "Promising eco-friendly biomaterials for future biomedicine: cleaner production and applications of nanocellulose," Environ. Technol. Innov., vol. 24, art. 101855, Nov. 2021. https://doi.org/10.1016/j.eti.2021.101855

[32] Borealis, "Polypropylene BormedTM RG835MO polypropyl-ene random copolymer," Jun. 2022. [Online]. Available: https://www.borealisgroup.com/storage/Datasheets/bormed/rg835mo/RG835MO-PDS-REG_WORLD-EN-V7-PDS-WORLD-53816-PDS_BORMED%20RG835MO_7_28062022.pdf

[33] S. Şen, "Insulin needles in adults and children," Klin. Tıp Bilim. Derg., vol. 7, no. 3, pp. 32–35, Apr. 2019.

[34] International Organization for Standardization, "Stainless steel needle tubing for the manufacture of medical devices — requirements and test methods," ISO 9626:2016, 2016. [Online]. Available: https://www.iso.org/standard/60480.html

[35] E. Pojer et al., "The case for anthocyanin consumption to promote human health: a review: anthocyanins and human health," Compr. Rev. Food Sci. Food Saf., vol. 12, no. 5, pp. 483–508, Sep. 2013. https://doi.org/10.1111/1541-4337.12024

[36] International Organization for Standardization, "Rubber bands - general requirements and test methods," ISO 22843:2020, 2020. [Online]. Available: https://www.iso.org/standard/74031.html

[37] E. Zijlstra et al., "Impact of injection speed, volume, and site on pain sensation," J. Diabetes Sci. Technol., vol. 12, no. 1, pp. 163–168, Oct. 2017. https://doi.org/10.1177/1932296817735121

[38] K. N. Clayton et al., "Measuring biotherapeutic viscosity and degradation on-chip with particle diffusometry," Lab Chip, vol. 17, no. 23, pp. 4148–4159, Jan. 2017. https://doi.org/10.1039/c7lc00507e

[39] L. N. Equihua, E. Á. Cornejo, and Y. C. Sánchez, "Evaluation of tunnel elastic and elasto-plastic deformations with approx-imations obtained from 3D-FEM simulations," Ing. Investig., vol. 43, no. 2, art. 7, 2023. [Online]. Available: https://dialnet.unirioja.es/descarga/articulo/9070282.pdf DOI: https://doi.org/10.15446/ing.investig.96880

[40] K. T. Samenjo et al., "Design of a syringe extension device (Chloe SED®) for low-resource settings in sub-Saharan Africa: a circular economy approach," Front. Med. Technol., vol. 5, pp. 01–18, Sep. 2023. https://doi.org/10.3389/fmedt.2023.1183179

[41] T. Serrecchia et al., "Human factors validation for a rheu-matoid arthritis auto-injector for the adalimumab biosimilar FKB327," Int. J. Hum. Factors Ergonom., vol. 7, no. 2, art. 144, 2020. https://doi.org/10.1504/ijhfe.2020.109561

[42] B. C. Roberts et al., "Novel cannula design improves large volume auto-injection rates for high viscosity solutions," Drug Deliv., vol. 29, no. 1, pp. 43–51, Dec. 2022. https://doi.org/10.1080/10717544.2021.2018069

[43] J. Lange et al., "Quantifying patient capabilities and set-ting the stage for future development: Insights from a sensor-augmented simulated use study with pen injectors," Med. De-vices Evid. Res., vol. 17, pp. 271–283, Jul. 2024. https://doi.org/10.2147/mder.s478141

[44] K. Berman et al., "Design development of the SMARTCLIC®/CLICWISE® injection device for self-administered subcutaneous therapies: findings from usability and human factor studies," Adv. Ther., vol. 40, no. 7, pp. 3070–3086, May 2023. https://doi.org/10.1007/s12325-023-02512-2

[45] M. L. Machal, "Framework for creating a qualified medical device development tool of autoinjectors," Front. Med. Technol., vol. 5, art. 1281403, Nov. 2023. https://doi.org/10.3389/fmedt.2023.1281403

[46] A. B. Singh, C. Khandelwal, and G. S. Dangayach, "Revolu-tionizing healthcare materials: innovations in processing, ad-vancements, and challenges for enhanced medical device integration and performance," J. Micromanuf., vol. 0, art. 0, Aug. 2024. https://doi.org/10.1177/25165984241256234

[47] C. Boccato and J. Vienken, "Do medical devices contrib-ute to sustainability? Environmental, societal and governance aspects," Int. J. Artif. Organs, vol. 47, no. 4, pp. 229–239, Apr. 2024. https://doi.org/10.1177/03913988241245015

How to Cite

APA

Şahin, B. (2025). Development of Auto-Injection Systems through the TRIZ Problem-Solving Method. Ingeniería e Investigación, 45(1), e116402. https://doi.org/10.15446/ing.investig.116402

ACM

[1]
Şahin, B. 2025. Development of Auto-Injection Systems through the TRIZ Problem-Solving Method. Ingeniería e Investigación. 45, 1 (Mar. 2025), e116402. DOI:https://doi.org/10.15446/ing.investig.116402.

ACS

(1)
Şahin, B. Development of Auto-Injection Systems through the TRIZ Problem-Solving Method. Ing. Inv. 2025, 45, e116402.

ABNT

ŞAHIN, B. Development of Auto-Injection Systems through the TRIZ Problem-Solving Method. Ingeniería e Investigación, [S. l.], v. 45, n. 1, p. e116402, 2025. DOI: 10.15446/ing.investig.116402. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/116402. Acesso em: 25 dec. 2025.

Chicago

Şahin, Burhan. 2025. “Development of Auto-Injection Systems through the TRIZ Problem-Solving Method”. Ingeniería E Investigación 45 (1):e116402. https://doi.org/10.15446/ing.investig.116402.

Harvard

Şahin, B. (2025) “Development of Auto-Injection Systems through the TRIZ Problem-Solving Method”, Ingeniería e Investigación, 45(1), p. e116402. doi: 10.15446/ing.investig.116402.

IEEE

[1]
B. Şahin, “Development of Auto-Injection Systems through the TRIZ Problem-Solving Method”, Ing. Inv., vol. 45, no. 1, p. e116402, Mar. 2025.

MLA

Şahin, B. “Development of Auto-Injection Systems through the TRIZ Problem-Solving Method”. Ingeniería e Investigación, vol. 45, no. 1, Mar. 2025, p. e116402, doi:10.15446/ing.investig.116402.

Turabian

Şahin, Burhan. “Development of Auto-Injection Systems through the TRIZ Problem-Solving Method”. Ingeniería e Investigación 45, no. 1 (March 31, 2025): e116402. Accessed December 25, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/116402.

Vancouver

1.
Şahin B. Development of Auto-Injection Systems through the TRIZ Problem-Solving Method. Ing. Inv. [Internet]. 2025 Mar. 31 [cited 2025 Dec. 25];45(1):e116402. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/116402

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

233

Downloads

Download data is not yet available.