Published
Effect of the Incorporation a Commercial Ricinus com-munis Extract on the Morphology and Properties of Poly(lactic acid) Electrospun Mats
Efecto de la incorporación de un extracto comercial de Ricinus commu-nis en la morfología y las propiedades de las matrices electro-hiladas de poliácido láctico
DOI:
https://doi.org/10.15446/ing.investig.116685Keywords:
nanofibers, phytopharmaceuticals, tissue engineering, drug delivery, biomaterials (en)Nanofibras, Fitofármacos, Ingeniería de tejidos, Liberación de fármacos, Biomateriales (es)
Downloads
Chronic skin wounds represent a major challenge in healthcare, necessitating the development of advanced biomaterials capable of promoting healing while maintaining structural integrity. In this study, poly(lactic acid) (PLA) nanofibrous mats were produced via electrospinning and loaded with a commercial extract of Ricinus communis (castor seed oil) as a potential dressing material. The process was performed in two phases: first, the optimal electrospinning parameters (voltage and flow rate) were selected by means of an analysis of variance (ANOVA); subsequently, the castor oil extract was incorporated into the PLA solution. Morphological and chemical analyses were carried out using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The wettability and absorption capacity were evaluated through contact angle measurements and swelling tests. The incorporation of castor oil increased swelling by 60% without affecting the contact angle (132°), indicating reductions in hydrophobicity without compromising surface characteristics. Additionally, the presence of excipients in the commercial extract affected the thermal behavior and crystallinity of the PLA. These findings highlight the potential of electrospun PLA mats containing Ricinus communis extract as functional wound dressing materials, combining biocompatibility, structural performance, and tunable physical properties for chronic wound management.
Las heridas cutáneas crónicas representan un desafío importante en el ámbito de la salud, lo que requiere el desarrollo de biomateriales avanzados capaces de promover la cicatrización a la vez que se mantiene la integridad estructural. En este estudio se produjeron mantas fibrosas de poli(ácido láctico) (PLA) mediante electrohilado y se incorporó un extracto comercial de Ricinus communis (aceite de ricino) como posible material para apósitos. El proceso se realizó en dos fases: primero, se seleccionaron los parámetros óptimos de electrohilado (voltaje y caudal) mediante un análisis de varianza (ANOVA); posteriormente, se incorporó el extracto al polímero. Se realizaron análisis morfológicos y químicos mediante microscopía electrónica de barrido (SEM) y espectroscopía infrarroja por transformada de Fourier (FTIR). La mojabilidad y la capacidad de absorción se evaluaron mediante ensayos de hinchamiento y mediciones del ángulo de contacto. La incorporación del extracto incrementó el grado de hinchamiento en un 60 % sin alterar el ángulo de contacto (132°), indicando una menor hidrofobicidad sin comprometer la superficie. Además, los excipientes del extracto afectaron el comportamiento térmico y la cristalinidad del PLA. Estos resultados destacan el potencial de las mantas electrohiladas de PLA con extracto de Ricinus communis como apósitos funcionales, combinando biocompatibilidad, desempeño estructural y propiedades físicas ajustables para el manejo de heridas crónicas.
References
[1] A. C. Figueiredo, J. M. Anaya-Mancipe, A. O.S. Barros, R. Santos-Oliveira, M. L. Dias, and R. M. S. M. Thiré, “Nanostructured electrospun polycaprolactone-propolis mats composed of different morphologies for potential use in wound healing,” Molecules, vol. 27, no. 16, art. 5351, 2022. https://doi.org/10.3390/molecules27165351
[2] J. M. A. Mancipe, F. A. Lobianco, M. L. Dias, and R. M. S. M. Thiré, “Electrospinning: New strategies for the treatment of skin melanoma,” Mini-rev. Medicin Chem., vol. 22, no. 4, pp. 564-578, 2022. https://doi.org/10.2174/i1389557521666210712111809
[3] M. L. L. Tan, J. S. Chin, L. Madden, and D. L. Becker, “Chal-lenges faced in developing an ideal chronic wound model,” Expert Opin. Drug Discov., vol. 18, pp. 99-114, 2023. https://doi.org/10.1080/17460441.2023.2158809
[4] P. Mohite, A. Puri, D. Bharati, and S. Singh, “Polyphenols-encapsulation nanoparticles for the treatment of chronic metabolic diseases.” In Role of Flavonoids in Chronic Met-abolic Diseases, Hoboken, NJ, USA: John Wiley & Sons Ltd., 2024, ch. 11, pp. 375-416.
[5] B. Rajchal, Y. N. Thapa, D. Karki, P. Prajapati, and R. Adhi-kari, “Insights into electrospun polymeric nanofiber mats: an innovative dressing for wound healing applications,” Polym. Int., vol. 74, no. 5, pp. 391-404, 2024. https://doi.org/10.1002/pi.6736
[6] S. Zhu and L. Nie, “Progress in fabrication of one-dimensional catalytic materials by electrospinning tech-nology,” J. Ind. Eng. Chem., vol. 93, pp. 28-56, 2021. https://doi.org/10.1016/j.jiec.2020.09.016
[7] J. M. A. Mancipe, S. G. Nista, G. E. R. Caballero, and L. H. I. Mei, “Thermochromic and/or photochromic properties of electrospun cellulose acetate microfibers for application as sensors in smart packing,” J. Appl. Polym. Sci., vol. 138, no. 11, art. 50039, 2021. https://doi.org/10.1002/app.50039
[8] G. L. G. Silva et al., “Antibiotics-loaded nanofibers fabri-cated by electrospinning for the treatment of bone infec-tions,” Arab. J. Chem., vol. 16, no. 1, art. 104392, 2023. https://doi.org/10.1016/j.arabjc.2022.104392
[9] P. Kumari, S. Sharma, P. K. Sharma, and A. Alam, “Treat-ment management of diabetic wounds utilizing herbalism: An overview,” Curr. Diabetes Rev., vol. 19, pp. 92-107, 2023. https://doi.org/10.2174/1573399818666220318095320
[10] V. R. Patel, G. G. Dumancas, L. C. K. Viswanath, R. Ma-ples, and B. J. J. Subong, “Castor oil: Properties, uses, and optimization of processing parameters in commercial pro-duction,” Lipids Insights, vol. 9, pp. 1-12, 2016. https://doi.org/10.4137/LPI.S40233
[11] E. C. Sanford, A. Muntz, and J. P. Craing, “Therapeutic potential of castor oil in managing blepharitis, meibomian gland dysfunction and dry eye,” Clin. Exp. Optom., vol. 104, no. 3, pp. 315-322, 2020. https://doi.org/10.1111/cxo.13148
[12] T. Tsujimoto, Y. Haza, Y. Yin, and H. Uyama. “Synthesis of branched poly(lactic acid) bearing a castor oil core and its plasticization effect on poly(lactic acid),” Polym. J., vol. 43, pp. 425-430, 2011. https://doi.org/10.1038/pj.2011.3
[13] R. N. Darie-Niță et al., “Evaluation of natural and modi-fied castor oil incorporation on the melt processing and physico-chemical properties of polylactic acid,” Polymers, vol. 14, no. 7, art. 3608, 2022. https://doi.org/10.3390/polym14173608
[14] S. K. Jaganathan, M. P. Mani, M. Ayyar, and E. Su-priyanto, “Engineered electrospun polyurethane and cas-tor oil nanocomposite scaffolds for cardiovascular appli-cations,” J. Mater. Sci., vol. 52, pp. 10673-10685, 2017. https://doi.org/10.1007/s10853-017-1286-0
[15] D. M. Fernandes et al., “Polymeric membranes base of on polylactic acid and babassu oil for wound healing,” Ma-ter. Today Commnun., vol. 26, art. 102173, 2021. https://doi.org/10.1016/j.mtcomm.2021.102173
[16] J. F. Mendes et al., “Obtaining poly(lactic acid) nano-fibers encapsulated with peppermint essential oil as poten-tial packaging via solution blow-spinning,” Int. J. Biol. Macromol., vol. 230, art. 123424, 2023. https://doi.org/10.1016/j.ijbiomac.2023.123424
[17] L. Dantas et al., “Degradation kinetic of PLA compounds with castor oil,” J. Appl. Polym. Sci., vol. 141, no. 21, art. e55408, 2024. https://doi.org/10.1002/app.55408
[18]. F. Ciftci et al., “Antibacterial and cellular behavior of PLA-based bacitracin and zataria multiflora nanofibers produced by electrospinning method,” Int. J. Polym. Ma-ter. Polym. Biomater., vol. 72, no. 4, pp. 319-334, 2023. https://doi.org/10.1080/00914037.2021.2008391
[19] T. Jamnongkan et al., “Innovate electrospun nanofibers mats based on polylactic acid composite with silver na-noparticles for medical application,” Polymers, vol. 16, no. 3, art. 409, 2024. https://doi.org/10.3390/polym16030409
[20] J. M. Anaya-Mancipe et al., “Electrospun nanofibers loaded with Plantago major L. extract for potential use in cutaneous healing,” Pharmaceutics, vol. 15, art. 1047, 2023. https://10.3390/pharmaceutics15041047
[21] T. Saygili, H. T. Kahraman, G. Aydin, A. Avci, and E. Peh-livan, “Production of PLA-based AgNPs-containing nano-fibers by electrospinning method and antibacterial appli-cation,” Polym. Bull., vol. 81, pp. 5455-5476, 2024. https://doi.org/10.1007/s00289-023-04956-6
[22] CIMA-AEMPS, “Linitul: Product information,” Spain Agen-cy of Medicines and Health Products, 2023. [Online]. Available: https://cima.aemps.es/cima/dochtml/p/32608/P_32608.html#6
[23] B. N. Teixeira, J. M. Anaya-Mancipe, and R. M. S. M. Thiré, “Evaluation of polycaprolactone nanofibers’ using green solvent systems by solution blow spinning (SBS),” Nano-technology, vol. 34, art. 5057017, 2023. https://doi.org/10.1088/1361-6528/acf8cd
[24] J. R. Sarasua, N. L. Rodríguez, A. L. Arraiza, and E. Meaurio, “Stereoselective crystallization and specific inter-actions in polylactides,” Macromolecules, vol. 38, no. 20, pp. 8362-8371, 2005. https://doi.org/10.1021/ma051266z
[25]. A. Wagner, V. Poursorkhabi, A. Mohanty, and M. Misra, “Analysis of porous electrospun fibers from poly(L-lactic acid)/poly(3-hydroxibutyrate-co-3-hydroxyvalerate) blends,” ACS Sust. Chem. Eng., vol. 2, no. 8, pp. 1976-1982, 2014. https://doi.org/10.1021/sc5000495
[26] J. M. Anaya-Mancipe, A. C. de Figueiredo, L. G. Rabello, M. L. Dias, and R. M. S. M. Thiré, “Evaluation of the poly-caprolactone hydrolytic degradation in acid solvent its in-fluence on the electrospinning process,” J. Appl. Polym. Sci., vol. 141, no. 29, art. e55662, 2024. https://doi.org/10.1002/app.55662
[27] H. Karabulut, S. Unal, S. Ulag, A. Ficai, D. Ficai, and O. Gunduz, “Mapping the influence of solvent composition over the characteristics of polylactic acid nanofibers fab-ricated by electrospinning,” ChemistrySelect, vol. 9, no. 17, art. e202301142, 2024. https://doi.org/10.1002/slct.202301142
[28] F. Topuz and T. Uyar, “Electrospinning of gelatin with tun-able fiber morphology from round to flat/ribbon,” Mater. Sci. Eng. C, vol. 80, pp. 371-378, 2017. https://doi.org/10.1016/j.msec.2017.06.001
[29] Y. Zhang et al., “Preparation and numerical simulation of food gum electrospun nanofibers,” J. Food Eng., vol. 341, art. 111352, 2023. https://doi.org/10.1016/j.jfoodeng.2022.111352
[30] E. Y. Gómez-Pachón, R. Vera-Graziano, and R. M. Cam-pos. “Structure of poly(lactic-acid) PLA nanofibers scaf-folds prepared by electrospinning,” IOP Conf. Ser. Mater. Sci. Eng., vol. 50, art. 012003, 2013. https://doi.org/10.1088/1757-899X/59/1/012003
[31] R. P. O. Santos, L. A. Ramos, and E. Frollini, “Biobased electrospun mats composed of aligned and nonaligned fibers from cellulose nanocrystals, castor oil, and recycled PET,” Int. J. Biol. Macromol., vol. 163, pp. 878-887, 2020. https://doi.org/10.1016/j.ijbiomac.2020.07.064
[32] S. Visht, S. S. Salih, D. A. Mohammed, A. A. Abduljabbar, S. J. Hama, and I. A. Khudhair, “Formulation and evalua-tion of lip balm using different herbal pigment,” Pharma-cogn. Res., vol. 16, no. 2, pp. 367-375, 2024. https://doi.org/10.5530/pres.16.2.46
[33] F. A. Atiku, A. A. Warra, and M. R. Enimola, “FTIR spectro-scopic analysis and fuel properties of wild castor (Ricinus communis L) seed oil,” Open Sci. J. Anal. Chem., vol. 1, no. 1, pp. 6-9, 2014. “http://www.openscienceonline.com/journal/archive2?journalId=713&paperId=362”
[34] R. Zhang, Q. Shi, P. Hu, J. Ji, and Z. Suo, “Influence of castor oil-based bio-oil on the properties and microstruc-ture of asphalt binder,” Constr. Build. Mater., vol. 408, art. 133564, 2023. https://doi.org/10.1016/j.conbuildmat.2023.133564
[35] D. H. S. Souza, P. V. Santoro, and M. L. Dias, “Isothermal crystallization kinetics of poly(lactic acid) stereo com-plex/graphene nanocomposites,” Mater. Res., vol. 21, art. e21070352, 2018. https://doi.org/10.1590/1980-5373-MR-2017-0352
[36] J. M. Anaya, M. L. Dias, and R. M. S. M. Thiré, “Avaliação morfológica de fibras eletrofiadas de policaprolactona em função do tipo de solvente,” Matéria (Rio J.), vol. 24, no. 3, art. e-12400, 2019. https://doi.org/10.1590/S1517-707620190003.0713
[37] E. M. Inácio, D. H. S. Souza, and M. L. Dias, “Thermal and crystallization behavior of PLA/PLLA-grafting cellulose nanocrystal,” Mater. Sci. Appl., vol. 11, pp. 44-57, 2020. https://doi.org/10.4236/msa.2020.111004
[38] N. Stoyanova et al., “Electrospun PLA-based biomaterials loaded with Melisa officinalis extract with strong antioxi-dant activity,” Polymers, vol. 15, no. 5, art. 1070, 2023. https://doi.org/10.3390/polym15051070
[39] N. I. Rahmat et al., “Correlation study of glass transition temperature (Tg) of polymer blends using for equation and experimental values,” AIP Conf. Proc., vol. 3225, no. 1, art. 050001, 2025. https://doi.org/10.1063/5.0264721
[40] D. Garcia-Garcia, A. Carbonell-Verdu, M. P. Arrieta, J. López-Martínez, and M. D. Samper, “Improvent of PLA film ductility by plasticization with epoxidizer karanja oil,” Polym. Degrad. Stab., vol. 179, art. 109259, 2020. https://doi.org/10.1016/j.polymdegradstab.2020.109259
[41] Y. J. Yang and Q. Dou, “Plasticization of poly(lactic acid) by bio-based plasticizer derived from castor oil,” J. Polym. Environ., vol. 33, pp. 3241-3258, 2025. https://doi.org/10.1007/s10924-025-03612-6
[42] N. Kubiak et al., “Sustainable PLA composites filled with poaceae fibers: Thermal, structural, and mechanical properties”. Materials, vol. 18, no. 17, art. 3952, 2025. https://doi.org/10.3390/ma18173952
[43] J. M. Anaya-Mancipe et al., “Solution blow spun with beaded-fiber morphologies as a drug delivery system with potential use for skin wound dressing,” ACS Appl. Mater. Interf., vol. 17, pp. 23466-23483, 2025. https://doi.org/10.1021/acsami.4c16675
[44] H. Qiao, A. Maazouz, and K. Lamnawar, “Study of mor-phology, and dynamic properties toward unveiling tha pertial miscibility in poly(lactic acid)-poly(hydroxybutyrate-co-hydroxyvalerate) blends,” Polymers, vol. 14, no. 24, art. 5359, 2022. https://doi.org/10.3390/polym14245359
[45] H. Bi, T. Feng, and Y. Han, “In vitro and in vivo compari-son study of electrospun PLA and PLA/PVA/SA fiber mem-branes for wound healing,” Polymer, vol. 14, no. 4, art. 839, 2020. https://doi.org/10.3390/polym12040839
[46] J. Yin, L. Xu, and A. Ahmed. “Batch preparation and characterization of electrospun porous polylactic acid-based nanofiber membranes antibacterial wound dress-ing,” Adv. Fiber Mater., vol. 4, pp. 832-844, 2022. https://doi.org/10.1007/s42765-022-00141-y
[47] G. Perumal et al., “Synthesis and characterization of curcumin loaded PLA-hyperbranched polyglycerol elec-trospun blend for wound dressing applications,” Mater. Sci. Eng. C, vol. 76, pp. 1196-1204, 2017. https://doi.org/10.1016/j.msec.2017.03.200
[48] F. Pahlevanzadeh et al., “Recent trend in three-dimensional bioinks based on alginate for biomedical applications,” Materials, vol. 13, no. 18, art. 3980, 2020. https://doi.org/10.3390/ma13183980
[49] F. S. Pessanha et al., “Effectiveness of epidermal growth factor loaded carboxymethylcellulose (EGF-CMC) hydro-gel in biofilm in wound of diabetic patients: A randomized clinical trial,” Gel, vol. 9, no. 2, art. 117, 2023. https://doi.org/10.3390/gels9020117
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Javier Mauricio Anaya Mancipe, José Andrés Anaya Mancipe, Rossana Mara da Silva Moreira Thiré, Marceli do Nascimento da Conceição

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.










