
Published
Application of Graphene Oxide Nanoparticles to Cementitious Composites to Mitigate the Effects of Attacks by Aggressive Agents
Aplicación de nanopartículas de óxido de grafeno en compuestos cementosos para mitigar los efectos del ataque de agentes agresivos
DOI:
https://doi.org/10.15446/ing.investig.117598Keywords:
nanotechnology, performance, mechanical properties, additions, graphene oxide (en)nanotecnología, desempeño, propiedades mecánicas, adiciones, óxido de grafeno (es)
Downloads
This study investigates the potential of adding 0.03% graphene oxide (GO) nanoparticles into cementitious composites, assessing their mechanical performance and resistance to carbonation. The results indicate a 26% increase in compressive strength, from 23.92 to 32.42 MPa, with tensile strength increasing by an average of 1.14 MPa. Furthermore, the composite exhibits 14% lower capillary water absorption, enhancing resistance to moisture ingress. In terms of carbonation resistance, the addition of GO reduces the carbonation front by approximately 46% compared to the reference samples. Service life estimations suggest that, under equivalent exposure conditions, a structure incorporating GO would experience a degradation equivalent to five years, whereas a conventional structure would degrade over 20 years. These findings highlight the effectiveness of GO nanoparticles in enhancing both the mechanical properties and durability of cementitious materials.
Este estudio investiga el potencial de incluir una concentración de 0.03 % de nanopartículas de óxido de grafeno (GO) en compuestos cementosos, evaluando su rendimiento mecánico y resistencia a la carbonatación. Los resultados indican un aumento del 26 % en la resistencia a la compresión, pasando de 23.92 a 32.42 MPa, con un aumento promedio de 1.14 MPa en la resistencia a la tracción. Además, el compuesto mostró una absorción de agua capilar un 14 % menor, mejorando la resistencia a la penetración de humedad. En términos de resistencia a la carbonatación, la adición de GO redujo el frente de carbonatación en aproximadamente un 46 % en comparación con las muestras de referencia. Las estimaciones de vida útil sugieren que, bajo condiciones de exposición equivalentes, una estructura que incorpore GO experimentaría una degradación equivalente a cinco años, mientras que una estructura convencional se degradaría en más de 20 años. Estos resultados destacan la efectividad de las nanopartículas de GO para mejorar tanto las propiedades mecánicas como la durabilidad de los materiales cementosos.
References
T. A. Frej and L. H. Alencar, “Fatores de sucesso no gerenciamento de múltiplos projetos na construção civil em Recife,” Production, vol. 20, no. 3, pp. 322-334, Sept. 2010. https://doi.org/10.1590/S0103-65132010005000043
C. K. Purchase et al., “Circular economy of construction and demolition waste: A literature review on lessons, challenges, and benefits,” Materials, vol. 15, no. 1, art. 76, 2021. https://doi.org/10.3390/ma15010076
A. A. Firoozi, A. A. Firoozi, D. O. Oyejobi, S. Avudaiappan, and E. S. Flores, “Emerging trends in sustainable building materials: Technological innovations, enhanced performance, and future directions,” Results Eng., vol 24, art. 103521, Dec. 2024. https://doi.org/10.1016/j.rineng.2024.103521
N. Makul and G. Suaiam, “New insights into the early age time dependent dielectric evolution of pozzolan modified eco efficient cement pastes within a frequency range of 200 MHz to 6500 MHz: Experiments and statistical modeling,” Eng. Sci., vol. 31, art. 1170, 2024. https://doi.org/10.30919/es1170
M. P. Rosa et al., “Viabilidade na reutilização da ardósia em substituição do agregado graúdo na dosagem do concreto,” Braz. J. Dev., vol. 6, pp. 936-948, 2020. https://doi.org/10.34117/bjdv6n1-065
N. Gerges et al., “The novelty of partially replacing cement with Gypsum: Optimum mix design and structural applications,” ES Mater. Manuf., 2024. [Online]. Available: https://doi.org/10.30919/esmm1336
P. Hiremath et al., “Investigating the mechanical properties, durability, and environmental impact of partial cement substitution with slag cement and rice husk ash for sustainable concrete production,” ES Food Agrofor., vol. 18, art. 1267, 2024. https://doi.org/10.30919/esfaf1267
G. Sua-iam and N. Makul, “Potential future direction of the sustainable production of precast concrete with recycled concrete aggregate: A critical review,” Eng. Sci., vol. 28, art. 1075, 2024. https://doi.org/10.30919/es1075
N. Taniguchi, “On the basic concept of ‘nano-technology’,” in Proc. Intl. Conf. Prod. Eng., Tokyo, Japan, 1974, pp. 18-23.
S.A. Filho and B.P. Backx, “Nanotecnologia e seus impactos na sociedade,” R. Tecnol. Soc., vol. 16, no. 40, pp. 1-15, Apr./Jun. 2020. https://doi.org/10.3895/rts.v16n40.9870
M. Feizbahr and P. Pourzanjani, “Nanotechnology in construction: Innovations, applications, and impacts authors,” J. Civ. Eng. Res., vol. 6, no. 1, pp. 35-4, 2024. https://doi.org/10.61186/JCER.6.1.35
M. Song, J. Wang, L. Yuan, C. Luan, and Z. Zhou, “Investigation on crack recovery behavior of engineered cementitious composite (ECC) incorporated memory alloy fiber at low temperature,” ES Mater. Manuf., vol. 17, pp. 23-33, 2022. https://doi.org/10.30919/esmm5f662
S. Al-Shereiqi, H. A. Abdel-Gawwad, and M. S. Meddah, “Unveiling the influence of varied alumina sources on fresh properties of ordinary Portland cement mortar and concrete: A comprehensive review,” Eng. Sci., vol. 30, art. 1118, 2024. https://doi.org/10.30919/es1118
R. M. Ferreira, “Avaliação dos ensaios de durabilidade do betão,” Master’s thesis, Esc. Eng., Univ. do Minho, Braga, Portugal, 2000.
L. A. Araujo et al., “Concrete gas permeability: Implications for hydrogen storage applications,” Appl. Sci., vol. 14, no. 15, art. 6408, 2024. https://doi.org/10.3390/app14156408
A. Bagheri, E. Negahban, A. Asad, H.A. Abbasi, S.M. Raza, “Graphene oxide-incorporated cementitious composites: a thorough investigation,” Mater. Adv., vol. 3, pp. 9040-9051, 2022. https://doi.org/10.1039/D2MA00169A
S. Chuah, Z. Pan, J. G. Sanjayan, C. M. Wang, and W. H. Duan, “Nano reinforced cement and concrete composites and new perspective from graphene oxide,” Constr. Build. Mater., vol. 73, pp. 113-124, Dec. 2014. https://doi.org/10.1016/j.conbuildmat.2014.09.040
Y. Y. Wu, L. Que, Z. Cui, and P. Lambert, “Physical properties of concrete containing graphene oxide nanosheets,” Materials, vol. 12, no. 10, art. 1707, May. 2019. https://doi.org/10.3390/ma12101707
M. Frąc, W. Pichór, and P. Szołdra, “Cement composites with expanded graphite as resistance heating elements,” J. Compos. Mater., vol. 54, no. 25, pp. 3821-2831, 2020. https://doi.org/10.1177/0021998320921510
Aggregates - Sieve analysis of fine and coarse aggregates, NBR NM 248, Brazilian Association of Technical Standards, Rio de Janeiro, Brazil, 2003.
Portland cement – Requirements, NBR 16697, Brazilian Association of Technical Standards, Rio de Janeiro, Brazil, 2018.
R. Berenguer, A. P. B. Capraro, M. H. F. Medeiros, A. M. P. Carneiro, R. A. Oliveira, “Sugar cane bagasse ash as a partial substitute of Portland cement: Effect on mechanical properties and emission of carbon dioxide,” J. Environ. Chem. Eng., vol. 8, no. 2, art. 103655, Apr. 2020. https://doi.org/10.1016/j.jece.2020.103655
G. Dias, T. Cellet, M. Santos, C. Carvalho, and L. Malmonge, “A caracterização morfológica de óxido de grafeno preparados pelo método de Hummers modificado,” Rev. Tecnol., vol. 29, no. 1, pp. 199-216, 2020. https://doi.org/10.4025/revtecnol.v29i1.51286
S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotech., vol. 4, pp. 217–224, Apr. 2009. https://doi.org/10.1038/nnano.2009.58
J. E. D. Vieira Segundo and E. O. Vilar, “Grafeno: Uma revisão sobre propriedades, mecanismos de produção e potenciais aplicações em sistemas energéticos,” REMAP, vol. 11, no. 2, pp. 54-57, 2016. https://remap.revistas.ufcg.edu.br/index.php/remap/article/viewFile/493/387
M. M. Mokhtar, S. A. Abo-El-Enein, M. Y. Hassaan, M. S. Morsy, and M. H. Khalil, “Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nanoplatelets reinforced cement,” Constr. Build. Mater., vol. 138, pp. 333-339, May. 2017. https://doi.org/10.1016/j.conbuildmat.2017.02.021
S. Stankovich et al., “Graphene-based composite materials,” Nature, vol. 442, pp. 282–286, Jul. 2006. https://doi.org/10.1038/nature04969
C. S. R. Indukuri and R. Nerella, “Enhanced transport properties of graphene oxide-based cement composite material,” J. Build. Eng., vol. 37, art. 102174, May. 2021. https://doi.org/10.1016/j.jobe.2021.102174
R. Hack, C. Correia, R. Zanon, and S. Pezzin, “Characterization of graphene nanosheets obtained by a modified Hummer’s method,” Matéria (Rio J.), vol. 23, no. 1, 2018. https://doi.org/10.1590/S1517-707620170001.0324
A. Alazmi, S. Rasul, S. P. Patole, and P. M. F. J. Costa, “Comparative study of synthesis and reduction methods for graphene oxide,” Polyhedron, vol. 116, pp. 153-161, Sep. 2016. https://doi.org/10.1016/j.poly.2016.04.044
Portland cement - Determination of compressive strength of cylindrical test specimens, NBR 7215, Brazilian Association of Technical Standards, Rio de Janeiro, Brazil, 2019.
R. He, T. Nantung, J. Olek, and N. Lu, “Use of dielectric constant for determination of water-to-cement ratio (W/C) in plastic concrete: part 2: comparison determined W/C values by ground penetrating radar (GPR) and microwave oven drying measurements,” ES Mater. Manuf., vol. 22, art. 874, 2023. https://doi.org/10.30919/esmm5f874
R. He, T. Nantung, and J. Olek, N. Lu, “Use of dielectric constant for determination of water-to-cement ratio (W/C) in plastic concrete: part 1. Volumetric water content modeling,” ES Mater. Manuf., vol. 21, art. 866, 2023. https://doi.org/10.30919/esmm5f866
Concrete — Compression test of cylindrical specimens, NBR 5739, Brazilian Association of Technical Standards, Rio de Janeiro, Brazil, 2018.
Mortar and hardened concrete - Determination of water absorption by capillarity, NBR 9779, Brazilian Association of Technical Standards, Rio de Janeiro, Brazil, 2012.
Concrete and mortar - Determination of the tension strength by diametrical compression of cylindrical test specimens, NBR 7222, Brazilian Association of Technical Standards, Rio de Janeiro, Brazil, 2011.
K. Gong et al., “Reinforcing effects of graphene oxide on Portland cement paste,” J. Mater. Civ. Eng., vol. 27, no. 2, Jul. 2015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125
S. Lv, Y. Ma, C. Qiu, T. Sun, J. Liu, and Q. Zhou, “Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites,” Constr. Build. Mater., vol. 49, pp. 121-127, Dec. 2013. https://doi.org/10.1016/j.conbuildmat.2013.08.022
Y. Wang, J. Yang, and D. Ouyang, “Effect of graphene oxide on mechanical properties of cement mortar and its strengthening mechanism,” Materials, vol. 12, no. 22, art. 3753, 2019. https://doi.org/10.3390/ma12223753
R. Odeh, R. Alawadi, A. Tarawneh, A. Alghossoon, R. Al-Mazaidh, and H. Amerah, “Estimating rice husk ash concrete compressive strength using hybrid machine learning methodology,” Eng. Sci., vol. 29, art. 1111, 2024. https://doi.org/10.30919/es1111
S. Leelatanon, T. Imjai, M. Setkit, R. Garcia, and C. K. Ma, “Shear strength of stirrup-free recycled aggregate concrete beams reinforced with steel fibers,” Eng. Sci., vol. 31, art. 1249, 2024. https://doi.org/10.30919/es1249
G. L. Golewski, “Assessing of water absorption on concrete composites containing fly ash up to 30 % in regards to structures completely immersed in water,” Case Stud. Const. Mater., vol. 19, art. e02337, 2023. https://doi.org/10.1016/j.cscm.2023.e02337
L. Qiu et al., “Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives,” Chem. - Eur. J., vol. 16, no. 35, art. 10653-10658, Sep. 2010. https://doi.org/10.1002/chem.201001771
S. Parveen, S. Rana, and R. Fangueiro. “A review on nanomaterial dispersion, microstructure and mechanical properties of carbon nanotube and nanofiber-based cement composites,” J. Nanomater., vol. 2013, art. 710175, 2013. https://doi.org/10.1155/2013/710175
C. Huang, Y. F. Su, R. Tokpatayeva, T. Nantung, and N. Lu, “Investigation of internal curing efficacy of Portland cement concrete incorporated with colloidal nano silica,” ES Mater. Manuf., vol. 20, art. 798, 2022. https://doi.org/10.30919/esmm5f798
A. Ashteyat, A. Obaidat, and R. Qerba, “The rheological, mechanical, and durability behavior of self-compacted concrete (SCC) mixed with hybrid fibers after exposure to high temperatures and cycles of freezing and thawing,” Eng. Sci., vol. 27, art. 1042, 2023. https://doi.org/10.30919/es1042
M. Abdel-Jaber, R. Al-Nsour, N. Shatarat, H. Katkhuda, and H. Al-zu’bi, “Thermal effect on the flexural performance of lightweight reinforced concrete beams using expanded polystyrene beads and pozzolana aggregate,” Eng. Sci., vol. 27, art. 1029, 2023. https://doi.org/10.30919/es1029
M. Abdel-Jaber, N. Shatarat, H. Katkhuda, and M. Al-Najjar, “Punching shear capacity of polystyrene lightweight concrete two-way slabs,” Eng. Sci., vol. 31, art. 1216, 2024. https://doi.org/10.30919/es1216
S. Huang, X. Meng, G. Zhao, and Z. Liu, “Development and engineering application of cement-based full length anchoring material,” ES Mater. Manuf., vol. 23, art. 1051, 2023. https://doi.org/10.30919/esmm1051
J. Khunthongkeaw, S. Tangtermsirikul, and T. Leelawat, “A study on carbonation depth prediction for fly ash concrete,” Constr. Build. Mater., vol. 20, no. 9, pp. 744-753, Nov. 2006. https://doi.org/10.1016/j.conbuildmat.2005.01.052
S. Rukzon and P. Chindaprasirt, “Strength and carbonation model of rice husk ash cement mortar with different fineness,” J. Mater. Civ. Eng., vol. 22, no. 3, pp. 253-259, Feb. 2010. https://doi.org/10.1061/(ASCE)0899-1561(2010)22:3(253)
É. Sousa, A. Santana, M. Moura, J. M. P. Q. Delgado, and R. Berenguer, “Thermography applied to the adhesion phenomenon of mortars with additions of submerged arc welding (SAW) slag,” Buildings, vol. 14, no. 9, art. 2960, 2024. https://doi.org/10.3390/buildings14092960
A. Younsi, P. Turcry, A. Aït-Mokhtar, and S. Staquet, “Accelerated carbonation of concrete with high content of mineral additions: Effect of interactions between hydration and drying,” Cem. Concr. Res., vol. 43, pp. 25-33, Jan. 2013. https://doi.org/10.1016/j.cemconres.2012.10.008
K. Turk, M. Karatas, and T. Gonen, “Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of SCC,” KSCE J. Civ. Eng., vol. 17, no. 1, pp. 202-209, Jan. 2013. https://doi.org/10.1007/s12205-013-1680-3
M. V. Moura, S. A. Paiva, V. D. Rodrigues, S. J. Lopes, T. F. Santos, and R. A. Berenguer, “Analysis of the influence of mechanical properties of cementitious composites using submerged arc welding (SAW) slag recycled aggregate,” GESEC, vol. 15, no. 13, art. e3623, 2024. https://doi.org/10.7769/gesec.v15i3.3623
R. A. Berenguer, et al., “Cement-based materials: Pozzolanic activities of mineral additions are compromised by the presence of reactive oxides,” J. Build. Eng., vol. 41, art. 102358, Sep. 2021. https://doi.org/10.1016/j.jobe.2021.102358
R. A. Berenguer et al., “Durability of concrete structures with sugar cane bagasse ash,” Adv. Mater. Sci. Eng., vol. 2020, art. 6907834, 2020. https://doi.org/10.1155/2020/6907834
M. H. F. Medeiros, J. J. O. Andrade, and P. Helene, “Durabilidade e vida útil das estruturas de concreto,” in Concreto: Ciência e Tecnologia, ed. 1. São Paulo, Brazil: IBRACON, 2011, ch. 22.
M. D. Sreeja and N. Nalanth, “Exploring environmentally sustainable concrete: An analytical investigation on high performance concrete using cellulose nanofibers,” ES Ener. Environ., vol. 27, art. 1382, 2025. https://doi.org/10.30919/esee1382
N. Kydyrbay et al., “Enhancing road durability and safety: a study on silica-based superhydrophobic coating for cement surfaces in road construction,” Eng. Sci., vol. 30, art. 1221, 2024. https://doi.org/10.30919/es1221
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Samuel Castro-Lopes, Barbara Simões, Sergio Peres, Viviane Rodrigues, Tiago Santos, Romildo Berenguer

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.