Published
Integration of Key Bioprocesses in a Biorefinery Model for the Valorization of Pig Manure: A Proposal Based on Bibliometrics
Integración de procesos clave en un modelo de biorrefinería para la valorización de estiércol de cerdo: una propuesta basada en la bibliometría
DOI:
https://doi.org/10.15446/ing.investig.118332Keywords:
agro-industrial waste, anaerobic digestion, bibliometric analysis, bioproducts, circular economy (en)residuos agroindustriales, digestión anaerobia, análisis bibliométrico, bioproductos, economía circular (es)
Downloads
Biorefineries have emerged as crucial elements in the circular economy, offering a sustainable solution for converting residual biomass into diverse valuable bioproducts by integrating various biotechnological pathways. Despite the challenges posed by the scale of animal waste production, biorefineries have demonstrated their ability to overcome these obstacles and unlock the inherent value of these resources. In this work, a comprehensive bibliometric analysis of specialized literature and patents on the valorization of pig manure was conducted. Among the various techniques, anaerobic digestion (AD) emerged as the most promising method for waste valorization, serving as a platform for biorefinery conceptualization. AD enables the segregation of biorefinery streams and exhibits considerable potential for generating a wide array of subproducts. The relationship between production and environmental indices has been established worldwide. This work proposes a conceptual biorefinery model that incorporates relevant biotechnological routes for the identified bioproducts. These include biogas, hydrogen, electricity, microalgae, bioethanol, volatile fatty acids, organic amendments, biofertilizers, and biodiesel. The limitations and advantages of the most significant processes have been duly considered and included in the model.
Las biorrefinerías han surgido como elementos cruciales en la economía circular al ofrecer una solución sostenible para convertir biomasa residual en diversos bioproductos de valor mediante la integración de distintas rutas biotecnológicas. A pesar de los desafíos que plantea la escala de la producción de residuos animales, las biorrefinerías han demostrado su capacidad para superar estos obstáculos y aprovechar el valor inherente de los recursos. En este trabajo se realizó un análisis bibliométrico integral de la literatura especializada y de patentes sobre la valorización del estiércol porcino. Entre las diversas técnicas, la digestión anaerobia (DA) se destacó como el método más prometedor para la valorización de residuos, al servir como plataforma para la conceptualización de biorrefinerías. La DA permite segregar las corrientes de la biorrefinería y presenta un potencial considerable para la generación de una amplia gama de subproductos. La relación entre los índices de producción y los índices ambientales ha sido establecida a nivel mundial. En este trabajo se propone un modelo conceptual de biorrefinería que incorpora rutas biotecnológicas relevantes para los bioproductos identificados. Estos incluyen biogás, hidrógeno, electricidad, microalgas, bioetanol, ácidos grasos volátiles, enmiendas orgánicas, biofertilizantes y biodiésel. Las limitaciones y ventajas de los procesos más significativos han sido debidamente consideradas e incorporadas en el modelo.
References
[1] C. C. Ogbu and S. N. Okey, “Agro-industrial waste management: The circular and bioeconomic perspective,” IntechOpen. [Online]. Available: https://www.intechopen.com/chapters/85597
[2] OECD and FAO, “OECD-FAO Agricultural Outlook 2023–2032,” 2023. [Online]. Available: https://www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2023-2032_08801ab7-en.html
[3] J. Havukainen, S. Väisänen, T. Rantala, M. Saunila, and J. Ukko, “Environmental impacts of manure management based on life cycle assessment approach,” J. Clean. Prod., vol. 264, art. 121576, Aug. 2020. https://doi.org/10.1016/j.jclepro.2020.121576
[4] FAO, “Environmental performance of pig supply chains. Guidelines for quantitative assessment,” 2022. [Online]. Available: https://www.fao.org/partnerships/leap/news-and-events/news/detail/en/c/1276273
[5] D. Galvis and M. Acevedo, “Evaluación del potencial energético de la biomasa residual proveniente del sector porcino en Colombia,” BSc thesis, Universidad Industrial de Santander, Bucaramanga, Colombia, 2008. [Online]. Available: https://docplayer.es/13961136-Evaluacion-del-potencial-energetico-de-la-biomasa-residual-proveniente-del-sector-porcino-en-colombia.html
[6] W. Huang et al., “Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate,” Water Res., vol. 90, pp. 344–353, Mar. 2016. https://doi.org/10.1016/j.watres.2015.12.044
[7] C.-Y. Lin, W. S. Chai, C.-H. Lay, C.-C. Chen, C.-Y. Lee, and P. L. Show, “Optimization of hydrolysis–acidogenesis phase of swine manure for biogas production using two-stage anaerobic fermentation,” Processes, vol. 9, no. 8, art. 1324, Aug. 2021. https://doi.org/10.3390/pr9081324
[8] S.-Y.-D. Zhou et al., “Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes,” Environ. Pollut., vol. 252, pp. 227–235, Sep. 2019. https://doi.org/10.1016/j.envpol.2019.05.098
[9] FAOSTAT, “Cultivos y productos de ganadería,” 2023. [Online]. Available: https://www.fao.org/faostat/es/#data/QCL
[10] United Nations, “Population,” 2022. [Online]. Available: https://www.un.org/es/global-issues/population
[11] J. C. Clavijo-Salinas, J. Fuertez, L. S. Cadavid-Rodríguez, and J. Sanabria, “Compatible technologies to anaerobic digestion for the integral valorization of organic waste,” in Valorisation of Agro-industrial Residues – Volume I: Biological Approaches, Z. Sakaria, R. Boopathy, and J. Dib, Eds. Cham, Switzerland: Springer, 2020, pp. 185–202. https://doi.org/10.1007/978-3-030-39137-9_9
[12] F. Rizzioli, D. Bertasini, D. Bolzonella, N. Frison, and F. Battista, “A critical review on the techno-economic feasibility of nutrients recovery from anaerobic digestate in the agricultural sector,” Sep. Purif. Technol., vol. 306, art. 122690, Feb. 2023. https://doi.org/10.1016/j.seppur.2022122690
[13] A. F. Ferreira, “Biorefinery concept,” in Biorefineries: Targeting Energy, High Value Products and Waste Valorisation, M. Rabaçal, A. F. Ferreira, C. A. M. Silva, and M. Costa, Eds., Cham, Switzerland: Springer Int. Publishing, 2017, pp. 1–20. https://doi.org/10.1007/978-3-319-48288-0_1
[14] W. Wang and D.-J. Lee, “Valorization of anaerobic digestion digestate: A prospect review,” Bioresour. Technol., vol. 323, art. 124626, Mar. 2021. https://doi.org/10.1016/j.biortech.2020.124626
[15] J. A. Moral-Muñoz, E. Herrera-Viedma, A. Santisteban-Espejo, and M. J. Cobo, “Software tools for conducting bibliometric analysis in science: An up-to-date review,” Prof. Inf., vol. 29, no. 1, art. 1, Jan. 2020. https://doi.org/10.3145/epi.2020.ene.03
[16] M. A. de Carvalho Silvello et al., “Microalgae-based carbohydrates: A green innovative source of bioenergy,” Bioresour. Technol., vol. 344, art. 126304, Jan. 2022. https://doi.org/10.1016/j.biortech.2021.126304
[17] R. J. B. Devos and L. M. Colla, “Simultaneous saccharification and fermentation to obtain bioethanol: A bibliometric and systematic study,” Bioresour. Technol. Rep., vol. 17, art. 100924, Feb. 2022. https://doi.org/10.1016/j.biteb.2021.100924
[18] Z. Z. Loh et al., “Current status and future prospects of simultaneous nitrification and denitrification in wastewater treatment: A bibliometric review,” Bioresour. Technol. Rep., vol. 23, art. 101505, Sep. 2023. https://doi.org/10.1016/j.biteb.2023.101505
[19] F. Vieira, H. E. P. Santana, D. P. Silva, and D. S. Ruzene, “A bibliometric description of organosolv pretreatment for coconut waste valorization,” BioEnergy Res., vol. 16, no. 4, pp. 2115–2130, Dec. 2023. https://doi.org/10.1007/s12155-022-10563-6
[20] CEPAL, Innovación para el desarrollo: la clave para una recuperación transformadora en América Latina y el Caribe. Santiago de Chile, Chile: Comisión Económica para América Latina y el Caribe, 2021. [Online]. Available: https://www.cepal.org/es/publicaciones/47544-innovacion-desarrollo-la-clave-recuperacion-transformadora-america-latina-caribe
[21] UNESCO, The race against time for smarter development: 2021 science report. Paris, France: UNESCO, 2021. [Online]. Available: https://www.unesco.org/reports/science/2021/en
[22] OECD, CAF, and ECLAC, Latin American economic outlook 2022: Towards a green and just transition. Paris, France: OECD Publishing, 2022. doi: 10.1787/3d5554fc-en
[23] M. Aria and C. Cuccurullo, “bibliometrix: An R-tool for comprehensive science mapping analysis,” J. Informetr., vol. 11, no. 4, pp. 959–975, Nov. 2017. https://doi.org/10.1016/j.joi.2017.08.007
[24] H. Wickham, ggplot2: Elegant graphics for data analysis. New York, NY, USA: Springer-Verlag, 2016. [Online]. Available: https://ggplot2.tidyverse.org
[25] Questel, “Orbit-Intelligence,” 2022. [Online]. Available: https://www.questel.com/ip-intelligence-software/orbit-intelligence/
[26] Z. Wendling, J. Emerson, D. Esty, M. Levy, and A. de Sherbinin, “2018 Environmental Performance Index (EPI),” 2018. https://doi.org/10.13140/RG.2.2.34995.12328
[27] J. Wilkinson, F. Escher, and A. Garcia, “The Brazil–China nexus in agrofood: What is at stake in the future of the animal protein sector,” Int. Q. Asian Stud., vol. 53, no. 2, art. 2, Jul. 2022. https://doi.org/10.11588/iqas.2022.2.13950
[28] S. M. H. Bamakan, N. Nezhadsistani, O. Bodaghi, and Q. Qu, “Patents and intellectual property assets as non-fungible tokens; key technologies and challenges,” Sci. Rep., vol. 12, no. 1, art. 2178, Feb. 2022. https://doi.org/10.1038/s41598-022-05920-6
[29] C. Diebolt and K. Pellier, “Patents in the long run: Theory, history and statistics,” Econ. Bus. Hist., vol. 8, no. 3, Mar. 2022. https://hal.science/hal-02929514
[30] C. Fink, Ed., Exploring the Worldwide Patent Surge. Geneva, Switzerland: World Intellectual Property Organization, 2013. https://doi.org/10.34667/tind.28875
[31] J. Trabelsi, A. J. Jebeniani, and S. Omri, “The dynamics of international patents production: A panel smooth transition regression approach,” Econ. Bull., vol. 44, no. 1, pp. 466–489, 2024. https://ideas.repec.org/a/ebl/ecbull/eb-21-01026.html
[32] R.-J. Guillard, “Facility for treating and recycling animal waste comprising methanisation, cultivation of microalgae and macrophytes, and vermiculture,” U.S. Patent 10 703 683, Jul. 7, 2020. [Online]. Available: https://www.orbit.com/#PatentDocumentPage
[33] D. Hodgkinson, R. Royer, and G. Laganiere, “Integrated technology for treatment and valorization of organic waste,” U.S. Patent 2006 0086660 A1, Apr. 27, 2006. [Online]. Available: https://patents.google.com/patent/US20060086660A1/en
[34] D. Bona et al., “The biorefinery concept applied to bioethanol and biomethane production from manure,” Waste Biomass Valor., vol. 9, no. 11, pp. 2133–2143, Nov. 2018. https://doi.org/10.1007/s12649-017-9981-2
[35] D. Hernández, B. Molinuevo-Salces, B. Riaño, A. M. Larrán-García, C. Tomás-Almenar, and M. C. García-González, “Recovery of protein concentrates from microalgal biomass grown in manure for fish feed and valorization of the by-products through anaerobic digestion,” Front. Sustain. Food Syst., vol. 2, Jun. 2018. https://doi.org/10.3389/fsufs.2018.00028
[36] C. Rangel et al., “Pilot-scale assessment of biohydrogen and volatile fatty acids production via dark fermentation of residual biomass,” Chem. Eng. Trans., vol. 92, pp. 61–66, Jun. 2022. https://doi.org/10.3303/CET2292011
[37] C. Vaneeckhaute, E. U. Remigi, F. M. G. Tack, E. Meers, E. Belia, and P. A. Vanrolleghem, “Model-based optimisation and economic analysis to quantify the viability and profitability of an integrated nutrient and energy recovery treatment train,” J. Environ. Eng. Sci., vol. 14, no. 1, pp. 2–12, Mar. 2019. https://doi.org/10.1680/jenes.18.00005
[38] S. K. Awasthi et al., “Multi-criteria research lines on livestock manure biorefinery development towards a circular economy: From the perspective of a life cycle assessment and business models strategies,” J. Clean. Prod., vol. 341, art. 130862, Mar. 2022. https://doi.org/10.1016/j.jclepro.2022.130862
[39] C. Nzeteu, F. Coelho, E. Davis, A. Trego, and V. O’Flaherty, “Current trends in biological valorization of waste-derived biomass: The critical role of VFAs to fuel a biorefinery,” Fermentation, vol. 8, no. 9, art. 445, Sep. 2022. https://doi.org/10.3390/fermentation8090445
[40] European Biogas Association, “Biomethane Map 2022–2023,” 2023. [Online]. Available: https://www.europeanbiogas.eu/biomethane-map-2022-2023
[41] S. Basumatary, H. H. Muigai, P. Goswami, and P. Kalita, “Enhancement of biomethane yield rate in anaerobic co-digestion of cattle dung and untreated vegetable waste through the amendment of water-hyacinth biochar,” Bioresour. Technol. Rep., vol. 29, art. 102013, Feb. 2025. https://doi.org/10.1016/j.biteb.2024.102013
[42] R. Liu et al., “Effect of mixing ratio and total solids content on temperature-phased anaerobic codigestion of rice straw and pig manure: Biohythane production and microbial structure,” Bioresour. Technol., vol. 344, art. 126173, Jan. 2022. https://doi.org/10.1016/j.biortech.2021.126173
[43] E. Righetti, S. Nortilli, F. Fatone, N. Frison, and D. Bolzonella, “A multiproduct biorefinery approach for the production of hydrogen, methane and volatile fatty acids from agricultural waste,” Waste Biomass Valor., vol. 11, no. 10, pp. 5239–5246, Oct. 2020. https://doi.org/10.1007/s12649-020-01023-3
[44] R. C. Ruiz-Bastidas, G. Turnes, E. Palacio, and L. S. Cadavid-Rodríguez, “Natural Ecuadorian zeolite: An effective ammonia adsorbent to enhance methane production from swine waste,” Chemosphere, vol. 336, art. 139098, Sep. 2 023. https://doi.org/10.1016/j.chemosphere.2023.139098
[45] J. M. Noreña, N. W. Osorio, and J. P. Gómez, Manual de uso de la porcinaza en la agricultura: De la granja al cultivo. Medellín, Colombia: Universidad Nacional de Colombia – Sede Medellín, 2016. [Online]. Available: https://porkcolombia.co/wp-content/uploads/2018/07/Manual-Porcinaza.pdf
[46] J. Yang, D. Wang, Z. Luo, and W. Zeng, “Anaerobic mono-digestion of pig manure in a leach bed coupled with a methanogenic reactor: Effects of the filter media,” J. Clean. Prod., vol. 234, pp. 1094–1101, 2019. https://doi.org/10.1016/j.jclepro.2019.06.054
[47] Q. Cao, W. Zhang, Y. Zheng, T. Lian, and H. Dong, “Production of short-chain carboxylic acids by co-digestion of swine manure and corn silage: Effect of carbon–nitrogen ratio,” Trans. ASABE, vol. 63, no. 2, pp. 445–454, 2020. https://doi.org/10.13031/trans.13878
[48] S. Ma, H. Wang, X. Gao, C. Bian, and W. Zhu, “Mitigating ammonia inhibition in anaerobic digestion with lignin-based carbon materials synthesized by hydrothermal carbonization,” Carbon Res., vol. 4, no. 1, pp. 1–18, Dec. 2025. https://doi.org/10.1007/s44246-024-00184-3
[49] S. Greses, E. Tomás-Pejó, and C. González-Fernández, “Food waste valorization into bioenergy and bioproducts through a cascade combination of bioprocesses using anaerobic open mixed cultures,” J. Clean. Prod., vol. 372, art. 133680, Oct. 2022. https://doi.org/10.1016/j.jclepro.2022.133680
[50] S. Villaró et al., “Production of microalgae using pilot-scale thin-layer cascade photobioreactors: Effect of water type on biomass composition,” Biomass Bioenergy, vol. 163, art. 106534, Aug. 2022. https://doi.org/10.1016/j.biombioe.2022.106534
[51] V. Bele, R. Rajagopal, and B. Goyette, “Closed loop bioeconomy opportunities through the integration of microalgae cultivation with anaerobic digestion: A critical review,” Bioresour. Technol. Rep., vol. 21, art. 101336, Feb. 2023. https://doi.org/10.1016/j.biteb.2023.101336
[52] C. Fawcett, C. Laamanen, and J. Scott, “Use of microalgae in animal feeds,” in Sustainable Industrial Processes Based on Microalgae, T. Lafarga and G. Acién, Eds., Elsevier, 2024, pp. 235–264. https://doi.org/10.1016/B978-0-443-19213-5.00011-X
[53] K. Gaurav, K. Neeti, and R. Singh, “Microalgae-based biodiesel production and its challenges and future opportunities: A review,” Green Technol. Sustain., vol. 2, no. 1, art. 100060, Jan. 2024. https://doi.org/10.1016/j.grets.2023.100060
[54] B. E. Condor et al., “Bioethanol production from microalgae biomass at high-solids loadings,” Bioresour. Technol., vol. 363, art. 128002, Nov. 2022. https://doi.org/10.1016/j.biortech.2022.128002
[55] N. Jeyakumar et al., “Experimental investigation on simultaneous production of bioethanol and biodiesel from macro-algae,” Fuel, vol. 329, art. 125362, Dec. 2022. https://doi.org/10.1016/j.fuel.2022.125362
[56] A. J. Hanson, N. M. Guho, A. J. Paszczynski, and E. R. Coats, “Community proteomics provides functional insight into polyhydroxyalkanoate production by a mixed microbial culture cultivated on fermented dairy manure,” Appl. Microbiol. Biotechnol., vol. 100, no. 18, pp. 7957–7976, Sep. 2016. https://doi.org/10.1007/s00253-016-7576-7
[57] C. Ospina-Betancourth, S. Echeverri, C. Rodriguez-Gonzalez, J. Wist, M. Y. Combariza, and J. Sanabria, “Enhancement of PHA production by a mixed microbial culture using VFA obtained from the fermentation of wastewater from yeast industry,” Fermentation, vol. 8, no. 4, art. 180, Apr. 2022. https://doi.org/10.3390/fermentation8040180
[58] M. Perez-Zabaleta, M. Atasoy, K. Khatami, E. Eriksson, and Z. Cetecioglu, “Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures,” Bioresour. Technol., vol. 323, art. 124604, Mar. 2021. https://doi.org/10.1016/j.biortech.2020.124604
[59] M. B. Batista, P. Brett, C. Appia-Ayme, Y.-P. Wang, and R. Dixon, “Disrupting hierarchical control of nitrogen fixation enables carbon-dependent regulation of ammonia excretion in soil diazotrophs,” PLOS Genet., vol. 17, no. 6, art. e1009617, Jun. 2021. https://doi.org/10.1371/journal.pgen.1009617
[60] C. F. Gutiérrez, N. Rodríguez-Romero, S. Egan, E. Holmes, and J. Sanabria, “Exploiting the potential of bioreactors for creating spatial organization in the soil microbiome: A strategy for increasing sustainable agricultural practices,” Microorganisms, vol. 10, no. 7, art. 1464, Jul. 2022. https://doi.org/10.3390/microorganisms10071464
[61] K. E. Luxem, A. M. L. Kraepiel, L. Zhang, J. R. Waldbauer, and X. Zhang, “Carbon substrate re-orders relative growth of a bacterium using Mo-, V-, or Fe-nitrogenase for nitrogen fixation,” Environ. Microbiol., vol. 22, no. 4, pp. 1397–1408, 2020. https://doi.org/10.1111/1462-2920.14955
[62] H. C. Woo and Y. H. Kim, “Eco-efficient recovery of bio-based volatile C2–6 fatty acids,” Biotechnol. Biofuels, vol. 12, no. 1, art. 92, Apr. 2019. https://doi.org/10.1186/s13068-019-1433-8
[63] S. Aydin, H. Yesil, and A. E. Tugtas, “Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors,” Bioresour. Technol., vol. 250, pp. 548–555, Feb. 2018. https://doi.org/10.1016/j.biortech.2017.11.061
[64] Md. N. Pervez et al., “Factors influencing pressure-driven membrane-assisted volatile fatty acids recovery and purification—A review,” Sci. Total Environ., vol. 817, art. 152993, Apr. 2022. https://doi.org/10.1016/j.scitotenv.2022.152993
[65] R. K. Srivastava et al., “Removal and recovery of nutrients and value-added products from wastewater: Technological options and practical perspective,” Syst. Microbiol. Biomanufacturing, vol. 2, no. 1, pp. 67–90, Jan. 2022. https://doi.org/10.1007/s43393-021-00056-6
[66] F. Lü, Z. Wang, H. Zhang, L. Shao, and P. He, “Anaerobic digestion of organic waste: Recovery of value-added and inhibitory compounds from liquid fraction of digestate,” Bioresour. Technol., vol. 333, art. 125196, Aug. 2021. https://doi.org/10.1016/j.biortech.2021.125196
[67] P. Fasahati and J. Liu, “Techno-economic analysis of production and recovery of volatile fatty acids from brown algae using membrane distillation,” Comp. Aided Chem. Eng., vol. 34, pp. 303–308, 2014. https://doi.org/10.1016/B978-0-444-63433-7.50035-3
[68] J.-L. Ji, F. Chen, S. Liu, Y. Yang, C. Hou, and Y.-Z. Wang, “Co-production of biogas and humic acid using rice straw and pig manure as substrates through solid-state anaerobic fermentation and subsequent aerobic composting,” J. Environ. Manage., vol. 320, art. 115860, Oct. 2022. https://doi.org/10.1016/j.jenvman.2022.115860
[69] J. Kasumba, K. Appala, G. E. Agga, J. H. Loughrin, and E. D. Conte, “Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics,” J. Environ. Sci. Health Part B, vol. 55, no. 2, pp. 135–147, Feb. 2020. https://doi.org/10.1080/03601234.2019.1667190
[70] E. Domingues, E. Fernandes, J. Gomes, and R. C. Martins, “Advanced oxidation processes perspective regarding swine wastewater treatment,” Sci. Total Environ., vol. 776, art. 145958, Jul. 2021. https://doi.org/10.1016/j.scitotenv.2021.145958
[71] Y. Feng et al., “Pyrolysis characteristics of anaerobic digestate from kitchen waste and availability of phosphorus in pyrochar,” J. Anal. Appl. Pyrolysis, vol. 168, art. 105729, Nov. 2022. https://doi.org/10.1016/j.jaap.2022.105729
[72] N. Marzban et al., “Smart integrated biorefineries in bioeconomy: A concept toward zero-waste, emission reduction, and self-sufficient energy production,” Biofuel Res. J., vol. 12, no. 1, pp. 2319–2349, Mar. 2025. https://doi.org/10.18331/BRJ2025.12.1.4
[73] H. F. González, M. Durán-Rincón, and V. Aristizábal-Marulanda, “Process scale-up for biorefineries in Latin America: Advances and challenges,” in The Future of Biorefineries, W. Nyström, Ed. Hauppauge, NY, USA: Nova Science Publishers, 2023, pp. 109–137. [Online]. Available: https://scopus.unalproxy.elogim.com/inward/record.uri?eid=2-s2.0-85147947988&partnerID=40&md5=b893a04cf9cf3050e3b11ec6b68822b1
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Nicolás Rodríguez-Romero, Juan Carlos Clavijo Salinas, Daniela Gonzáles-Payán, Juan Sebastián Torres Lucas, Irma Janeth Sanabria Gómez

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.










