Published

2025-06-01

A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties

Un modelo híbrido de votación por conjunto para la clasificación y ordenamiento eficiente de variedades de dátiles

DOI:

https://doi.org/10.15446/ing.investig.118469

Keywords:

artificial intelligence, classification, machine learning, smart agriculture, date fruits (en)
inteligencia artificial, clasificación, aprendizaje automático, agricultura inteligente, dátiles (es)

Downloads

Authors

Dates constitute one of Algeria's most important agricultural products, given their substantial health and economic advantages. Furthermore, they represent a vital export item beyond the hydrocarbon industry. The existing conventional techniques for classifying and sorting dates are ineffective, time-consuming, and labor-intensive, leading to a discrepancy between restricted exports and elevated production levels. This work presents an ensemble learning (EL) model that utilizes transfer learning (TL) strategies to overcome obstacles and improve date fruit classification. We assess the efficacy of four classifiers, i.e., MobileNetV2, EfficientNet, DenseNet201, and an ensemble soft voting classifier that employs TL, with a dataset of 1619 photos representing 20 distinct varieties of Algerian dates. The dataset used is one of the greatest benchmarks for varietal diversity. The suggested hybrid model exhibits exceptional performance, with a validation accuracy of 99.07% and a classification accuracy of 99.93%. It establishes a new benchmark in agricultural technology by exceeding all assessed models in terms of precision, recall, and F1-score. These findings demonstrate the potential of this approach to completely transform date sorting and markedly improve agricultural production and efficiency.

Los dátiles constituyen uno de los productos agrícolas más importantes de Argelia debido a sus significativos beneficios para la salud y la economía. Además, representan un artículo de exportación vital más allá de la industria de los hidrocarburos. Las técnicas convencionales que existen para clasificar y ordenar dátiles son ineficaces, consumen mucho tiempo y requieren mucha mano de obra, lo que genera una discrepancia entre las exportaciones limitadas y los elevados niveles de producción. Este trabajo presenta un modelo de aprendizaje en conjunto (EL) que utiliza estrategias de aprendizaje por transferencia (TL) para superar obstáculos y mejorar la clasificación de frutos de dátiles. Evaluamos la eficacia de cuatro clasificadores, i.e., MobileNetV2, EfficientNet y DenseNet201, y un clasificador de votación suave en conjunto que emplea TL, utilizando un conjunto de datos de 1619 imágenes que representan 20 variedades distintas de dátiles argelinos. El conjunto de datos utilizado es uno de los mayores referentes en diversidad varietal. El modelo híbrido propuesto presenta un rendimiento excepcional, con una precisión de validación del 99.07 % y una precisión de clasificación del 99.93 %, y establece un nuevo referente en la tecnología agrícola al superar a todos los modelos evaluados en términos de precisión, sensibilidad y puntuación F1. Estos hallazgos demuestran el potencial de este enfoque para transformar por completo la clasificación de dátiles y mejorar notablemente la producción y eficiencia agrícola.

References

A. Sofiane, B. Mostefa, and B. Soumia, “Deep learning model based on VGG16 for tomato leaf diseases detection and categorization,” in Proc. 2nd Int. Conf. Electr. Eng. Autom. Control (ICEEAC), IEEE, May 2024, pp. 1–6. https://doi.org/10.1109/ICEEAC61226.2024.10576347

J. Rashid, I. Khan, I. Ahmed Abbasi, M. Rizwan Saeed, M. Saddique, and M. Abbas, “A hybrid deep learning approach to classify the plant leaf species,” Comput. Mater. Contin., vol. 76, no. 3, pp. 3897–3920, 2023. https://doi.org/10.32604/cmc.2023.040356

A. A. Al-Kharaz, A. B. A. Alwahhab, and V. Sabeeh, “Innovative date fruit classifier based on scatter wavelet and stacking ensemble,” HighTech Innov. J., vol. 5, no. 2, pp. 361–381, Jun. 2024. https://doi.org/10.28991/HIJ-2024-05-02-010

Y. Al-Mulla, A. Ali, and K. Parimi, “Detection and analysis of dubas-infested date palm trees using deep learning, remote sensing, and GIS techniques in Wadi Bani Kharus,” Sustainability, vol. 15, no. 19, art. 14045, Sep. 2023. https://doi.org/10.3390/su151914045

M. Safran, W. Alrajhi, and S. Alfarhood, “DPXception: A lightweight CNN for image-based date palm species classification,” Front. Plant Sci., vol. 14, pp. 1–14, Jan. 2024. https://doi.org/10.3389/fpls.2023.1281724

P. Rybacki et al., “Convolutional neural network (CNN) model for the classification of varieties of date palm fruits (Phoenix dactylifera L.),” Sensors, vol. 24, no. 2, art. 558, Jan. 2024. https://doi.org/10.3390/s24020558

O. Aiadi, B. Khaldi, M. L. Kherfi, M. L. Mekhalfi, and A. Alharbi, “Date fruit sorting based on deep learning and discriminant correlation analysis,” IEEE Access, vol. 10, pp. 79655–79668, 2022. https://doi.org/10.1109/ACCESS.2022.3194550

S. Khirani, H. Boutaj, C. El Modafar, and A. O. E. Khelil, “Arbuscular mycorrhizal fungi associated with date palm in Ouargla region (southeastern Algeria),” Plant Cell Biotechnol. Mol. Biol., vol. 21, no. 45–46, pp. 15–28, 2020. https://www.researchgate.net/publication/344712109

M. E. H. Chowdhury et al., “Automatic and reliable leaf disease detection using deep learning techniques,” AgriEngineering, vol. 3, no. 2, pp. 294–312, May 2021. https://doi.org/10.3390/agriengineering3020020

A. Magsi, J. Ahmed Mahar, and S. H. Danwar, “Date fruit recognition using feature extraction techniques and deep convolutional neural network,” Indian J. Sci. Technol., vol. 12, no. 32, pp. 1–12, Aug. 2019. https://doi.org/10.17485/ijst/2019/v12i32/146441

A. Alsirhani, M. H. Siddiqi, A. M. Mostafa, M. Ezz, and A. A. Mahmoud, “A novel classification model of date fruit dataset using deep transfer learning,” Electronics, vol. 12, no. 3, art. 665, Jan. 2023. https://doi.org/10.3390/electronics12030665

L. Khriji, A. Chiheb, and M. Awadalla, “Artificial intelligent techniques for palm date varieties classification,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 9, pp. 489–495, 2020. https://doi.org/10.14569/IJACSA.2020.0110958

A. Almutairi, J. Alharbi, S. Alharbi, H. F. Alhasson, S. S. Alharbi, and S. Habib, “Date fruit detection and classification based on its variety using deep learning technology,” IEEE Access, vol. 12, pp. 190666–190677, 2024. https://doi.org/10.1109/ACCESS.2024.3433485

M. Koklu, R. Kursun, Y. S. Taspinar, and I. Cinar, “Classification of date fruits into genetic varieties using image analysis,” Math. Probl. Eng., vol. 2021, pp. 1–13, Nov. 2021. https://doi.org/10.1155/2021/4793293

K. Albarrak, Y. Gulzar, Y. Hamid, A. Mehmood, and A. B. Soomro, “A deep learning-based model for date fruit classification,” Sustainability, vol. 14, no. 10, art. 6339, May 2022. https://doi.org/10.3390/su14106339

D. M. Ibrahim and N. M. Elshennawy, “Improving date fruit classification using CycleGAN-generated dataset,” Comput. Model. Eng. Sci., vol. 131, no. 1, pp. 331–348, 2022. https://doi.org/10.32604/cmes.2022.016419

Y. A. Mukhlif et al., “Ant colony and whale optimization algorithms aided by neural networks for optimum skin lesion diagnosis: A thorough review,” Mathematics, vol. 12, no. 7, art. 1049, Mar. 2024. https://doi.org/10.3390/math12071049

D. Chen, X. Qi, Y. Zheng, Y. Lu, Y. Huang, and Z. Li, “Synthetic data augmentation by diffusion probabilistic models to enhance weed recognition,” Comput. Electron. Agric., vol. 216, art. 108517, Jan. 2024. https://doi.org/10.1016/j.compag.2023.108517

J. Kotwal, R. Kashyap, P. M. Shafi, and V. Kimbahune, “Enhanced leaf disease detection: UNet for segmentation and optimized efficientnet for disease classification,” Softw. Impacts, vol. 22, p. 100701, Nov. 2024. https://doi.org/10.1016/j.simpa.2024.100701

Z. Li et al., “Enhancing tea leaf disease identification with lightweight MobileNetV2,” Comput. Mater. Contin., vol. 80, no. 1, pp. 679–694, 2024. https://doi.org/10.32604/cmc.2024.051526

T. O’Halloran, G. Obaido, B. Otegbade, and I. D. Mienye, “A deep learning approach for maize lethal necrosis and maize streak virus disease detection,” Mach. Learn. with Appl., vol. 16, art. 100556, Jun. 2024. https://doi.org/10.1016/j.mlwa.2024.100556

Zia-ur-Rehman et al., “Classification of Alzheimer disease using DenseNet-201 based on deep transfer learning technique,” PLoS One, vol. 19, no. 9, art. e0304995, Sep. 2024. https://doi.org/10.1371/journal.pone.0304995

M. Azim Mim, N. Majadi, and P. Mazumder, “A soft voting ensemble learning approach for credit card fraud detection,” Heliyon, vol. 10, no. 3, art. e25466, Feb. 2024. https://doi.org/10.1016/j.heliyon.2024.e25466

H. Bakır, “VoteDroid: A new ensemble voting classifier for malware detection based on fine-tuned deep learning models,” Multimed. Tools Appl., vol. 84, pp. 10923–10944, May 2024. https://doi.org/10.1007/s11042-024-19390-7

How to Cite

APA

Abden, S., Bendjima, M. & Benkrama, S. (2025). A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties. Ingeniería e Investigación, 45(1), e118469. https://doi.org/10.15446/ing.investig.118469

ACM

[1]
Abden, S., Bendjima, M. and Benkrama, S. 2025. A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties. Ingeniería e Investigación. 45, 1 (Mar. 2025), e118469. DOI:https://doi.org/10.15446/ing.investig.118469.

ACS

(1)
Abden, S.; Bendjima, M.; Benkrama, S. A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties. Ing. Inv. 2025, 45, e118469.

ABNT

ABDEN, S.; BENDJIMA, M.; BENKRAMA, S. A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties. Ingeniería e Investigación, [S. l.], v. 45, n. 1, p. e118469, 2025. DOI: 10.15446/ing.investig.118469. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/118469. Acesso em: 25 dec. 2025.

Chicago

Abden, Sofiane, Mostefa Bendjima, and Soumia Benkrama. 2025. “A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties”. Ingeniería E Investigación 45 (1):e118469. https://doi.org/10.15446/ing.investig.118469.

Harvard

Abden, S., Bendjima, M. and Benkrama, S. (2025) “A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties”, Ingeniería e Investigación, 45(1), p. e118469. doi: 10.15446/ing.investig.118469.

IEEE

[1]
S. Abden, M. Bendjima, and S. Benkrama, “A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties”, Ing. Inv., vol. 45, no. 1, p. e118469, Mar. 2025.

MLA

Abden, S., M. Bendjima, and S. Benkrama. “A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties”. Ingeniería e Investigación, vol. 45, no. 1, Mar. 2025, p. e118469, doi:10.15446/ing.investig.118469.

Turabian

Abden, Sofiane, Mostefa Bendjima, and Soumia Benkrama. “A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties”. Ingeniería e Investigación 45, no. 1 (March 31, 2025): e118469. Accessed December 25, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/118469.

Vancouver

1.
Abden S, Bendjima M, Benkrama S. A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties. Ing. Inv. [Internet]. 2025 Mar. 31 [cited 2025 Dec. 25];45(1):e118469. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/118469

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Ilvico Sonata, Yulyani Arifin. (2025). Deep Learning Approach for Palm Fruit Ripeness Classification Using MobileNet. 2025 4th International Conference on Creative Communication and Innovative Technology (ICCIT). , p.1. https://doi.org/10.1109/ICCIT65724.2025.11167699.

Dimensions

PlumX

Article abstract page views

369

Downloads

Download data is not yet available.