Published
A Hybrid Voting Ensemble Model for the Efficient Sorting and Classification of Date Fruit Varieties
Un modelo híbrido de votación por conjunto para la clasificación y ordenamiento eficiente de variedades de dátiles
DOI:
https://doi.org/10.15446/ing.investig.118469Keywords:
artificial intelligence, classification, machine learning, smart agriculture, date fruits (en)inteligencia artificial, clasificación, aprendizaje automático, agricultura inteligente, dátiles (es)
Downloads
Dates constitute one of Algeria's most important agricultural products, given their substantial health and economic advantages. Furthermore, they represent a vital export item beyond the hydrocarbon industry. The existing conventional techniques for classifying and sorting dates are ineffective, time-consuming, and labor-intensive, leading to a discrepancy between restricted exports and elevated production levels. This work presents an ensemble learning (EL) model that utilizes transfer learning (TL) strategies to overcome obstacles and improve date fruit classification. We assess the efficacy of four classifiers, i.e., MobileNetV2, EfficientNet, DenseNet201, and an ensemble soft voting classifier that employs TL, with a dataset of 1619 photos representing 20 distinct varieties of Algerian dates. The dataset used is one of the greatest benchmarks for varietal diversity. The suggested hybrid model exhibits exceptional performance, with a validation accuracy of 99.07% and a classification accuracy of 99.93%. It establishes a new benchmark in agricultural technology by exceeding all assessed models in terms of precision, recall, and F1-score. These findings demonstrate the potential of this approach to completely transform date sorting and markedly improve agricultural production and efficiency.
Los dátiles constituyen uno de los productos agrícolas más importantes de Argelia debido a sus significativos beneficios para la salud y la economía. Además, representan un artículo de exportación vital más allá de la industria de los hidrocarburos. Las técnicas convencionales que existen para clasificar y ordenar dátiles son ineficaces, consumen mucho tiempo y requieren mucha mano de obra, lo que genera una discrepancia entre las exportaciones limitadas y los elevados niveles de producción. Este trabajo presenta un modelo de aprendizaje en conjunto (EL) que utiliza estrategias de aprendizaje por transferencia (TL) para superar obstáculos y mejorar la clasificación de frutos de dátiles. Evaluamos la eficacia de cuatro clasificadores, i.e., MobileNetV2, EfficientNet y DenseNet201, y un clasificador de votación suave en conjunto que emplea TL, utilizando un conjunto de datos de 1619 imágenes que representan 20 variedades distintas de dátiles argelinos. El conjunto de datos utilizado es uno de los mayores referentes en diversidad varietal. El modelo híbrido propuesto presenta un rendimiento excepcional, con una precisión de validación del 99.07 % y una precisión de clasificación del 99.93 %, y establece un nuevo referente en la tecnología agrícola al superar a todos los modelos evaluados en términos de precisión, sensibilidad y puntuación F1. Estos hallazgos demuestran el potencial de este enfoque para transformar por completo la clasificación de dátiles y mejorar notablemente la producción y eficiencia agrícola.
References
A. Sofiane, B. Mostefa, and B. Soumia, “Deep learning model based on VGG16 for tomato leaf diseases detection and categorization,” in Proc. 2nd Int. Conf. Electr. Eng. Autom. Control (ICEEAC), IEEE, May 2024, pp. 1–6. https://doi.org/10.1109/ICEEAC61226.2024.10576347
J. Rashid, I. Khan, I. Ahmed Abbasi, M. Rizwan Saeed, M. Saddique, and M. Abbas, “A hybrid deep learning approach to classify the plant leaf species,” Comput. Mater. Contin., vol. 76, no. 3, pp. 3897–3920, 2023. https://doi.org/10.32604/cmc.2023.040356
A. A. Al-Kharaz, A. B. A. Alwahhab, and V. Sabeeh, “Innovative date fruit classifier based on scatter wavelet and stacking ensemble,” HighTech Innov. J., vol. 5, no. 2, pp. 361–381, Jun. 2024. https://doi.org/10.28991/HIJ-2024-05-02-010
Y. Al-Mulla, A. Ali, and K. Parimi, “Detection and analysis of dubas-infested date palm trees using deep learning, remote sensing, and GIS techniques in Wadi Bani Kharus,” Sustainability, vol. 15, no. 19, art. 14045, Sep. 2023. https://doi.org/10.3390/su151914045
M. Safran, W. Alrajhi, and S. Alfarhood, “DPXception: A lightweight CNN for image-based date palm species classification,” Front. Plant Sci., vol. 14, pp. 1–14, Jan. 2024. https://doi.org/10.3389/fpls.2023.1281724
P. Rybacki et al., “Convolutional neural network (CNN) model for the classification of varieties of date palm fruits (Phoenix dactylifera L.),” Sensors, vol. 24, no. 2, art. 558, Jan. 2024. https://doi.org/10.3390/s24020558
O. Aiadi, B. Khaldi, M. L. Kherfi, M. L. Mekhalfi, and A. Alharbi, “Date fruit sorting based on deep learning and discriminant correlation analysis,” IEEE Access, vol. 10, pp. 79655–79668, 2022. https://doi.org/10.1109/ACCESS.2022.3194550
S. Khirani, H. Boutaj, C. El Modafar, and A. O. E. Khelil, “Arbuscular mycorrhizal fungi associated with date palm in Ouargla region (southeastern Algeria),” Plant Cell Biotechnol. Mol. Biol., vol. 21, no. 45–46, pp. 15–28, 2020. https://www.researchgate.net/publication/344712109
M. E. H. Chowdhury et al., “Automatic and reliable leaf disease detection using deep learning techniques,” AgriEngineering, vol. 3, no. 2, pp. 294–312, May 2021. https://doi.org/10.3390/agriengineering3020020
A. Magsi, J. Ahmed Mahar, and S. H. Danwar, “Date fruit recognition using feature extraction techniques and deep convolutional neural network,” Indian J. Sci. Technol., vol. 12, no. 32, pp. 1–12, Aug. 2019. https://doi.org/10.17485/ijst/2019/v12i32/146441
A. Alsirhani, M. H. Siddiqi, A. M. Mostafa, M. Ezz, and A. A. Mahmoud, “A novel classification model of date fruit dataset using deep transfer learning,” Electronics, vol. 12, no. 3, art. 665, Jan. 2023. https://doi.org/10.3390/electronics12030665
L. Khriji, A. Chiheb, and M. Awadalla, “Artificial intelligent techniques for palm date varieties classification,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 9, pp. 489–495, 2020. https://doi.org/10.14569/IJACSA.2020.0110958
A. Almutairi, J. Alharbi, S. Alharbi, H. F. Alhasson, S. S. Alharbi, and S. Habib, “Date fruit detection and classification based on its variety using deep learning technology,” IEEE Access, vol. 12, pp. 190666–190677, 2024. https://doi.org/10.1109/ACCESS.2024.3433485
M. Koklu, R. Kursun, Y. S. Taspinar, and I. Cinar, “Classification of date fruits into genetic varieties using image analysis,” Math. Probl. Eng., vol. 2021, pp. 1–13, Nov. 2021. https://doi.org/10.1155/2021/4793293
K. Albarrak, Y. Gulzar, Y. Hamid, A. Mehmood, and A. B. Soomro, “A deep learning-based model for date fruit classification,” Sustainability, vol. 14, no. 10, art. 6339, May 2022. https://doi.org/10.3390/su14106339
D. M. Ibrahim and N. M. Elshennawy, “Improving date fruit classification using CycleGAN-generated dataset,” Comput. Model. Eng. Sci., vol. 131, no. 1, pp. 331–348, 2022. https://doi.org/10.32604/cmes.2022.016419
Y. A. Mukhlif et al., “Ant colony and whale optimization algorithms aided by neural networks for optimum skin lesion diagnosis: A thorough review,” Mathematics, vol. 12, no. 7, art. 1049, Mar. 2024. https://doi.org/10.3390/math12071049
D. Chen, X. Qi, Y. Zheng, Y. Lu, Y. Huang, and Z. Li, “Synthetic data augmentation by diffusion probabilistic models to enhance weed recognition,” Comput. Electron. Agric., vol. 216, art. 108517, Jan. 2024. https://doi.org/10.1016/j.compag.2023.108517
J. Kotwal, R. Kashyap, P. M. Shafi, and V. Kimbahune, “Enhanced leaf disease detection: UNet for segmentation and optimized efficientnet for disease classification,” Softw. Impacts, vol. 22, p. 100701, Nov. 2024. https://doi.org/10.1016/j.simpa.2024.100701
Z. Li et al., “Enhancing tea leaf disease identification with lightweight MobileNetV2,” Comput. Mater. Contin., vol. 80, no. 1, pp. 679–694, 2024. https://doi.org/10.32604/cmc.2024.051526
T. O’Halloran, G. Obaido, B. Otegbade, and I. D. Mienye, “A deep learning approach for maize lethal necrosis and maize streak virus disease detection,” Mach. Learn. with Appl., vol. 16, art. 100556, Jun. 2024. https://doi.org/10.1016/j.mlwa.2024.100556
Zia-ur-Rehman et al., “Classification of Alzheimer disease using DenseNet-201 based on deep transfer learning technique,” PLoS One, vol. 19, no. 9, art. e0304995, Sep. 2024. https://doi.org/10.1371/journal.pone.0304995
M. Azim Mim, N. Majadi, and P. Mazumder, “A soft voting ensemble learning approach for credit card fraud detection,” Heliyon, vol. 10, no. 3, art. e25466, Feb. 2024. https://doi.org/10.1016/j.heliyon.2024.e25466
H. Bakır, “VoteDroid: A new ensemble voting classifier for malware detection based on fine-tuned deep learning models,” Multimed. Tools Appl., vol. 84, pp. 10923–10944, May 2024. https://doi.org/10.1007/s11042-024-19390-7
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Ilvico Sonata, Yulyani Arifin. (2025). Deep Learning Approach for Palm Fruit Ripeness Classification Using MobileNet. 2025 4th International Conference on Creative Communication and Innovative Technology (ICCIT). , p.1. https://doi.org/10.1109/ICCIT65724.2025.11167699.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2025 Sofiane Abden, Mostefa Bendjima, Soumia Benkrama

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.










