Published

2025-10-01

Wire Arc Additive Manufacturing of 308L Stainless Steel: Dimensional Characterization, Arc Stability, Microstructural Evolution, and Mechanical Anisotropy in Thin-Wall Structures

Manufactura aditiva de acero inoxidable 308L mediante arco y alambre: caracterización dimensional, estabilidad del arco, evolución microestructural y anisotropía mecánica estructuras de paredes delgadas

DOI:

https://doi.org/10.15446/ing.investig.118731

Keywords:

wire arc additive manufacturing, 308L stainless steel, dimensional characterization, arc stability, microstructural behavior, mechanical anisotropy (en)
manufactura aditiva mediante arco y alambre, acero inoxidable 308L, caracterización dimensional, estabilidad del arco, comportamiento microestructural, anisotropía mecánica (es)

Downloads

Authors

  • Theylor Andres Amaya Villabón Universidad Nacional de Colombia
  • Andres Fernando Gil Plazas SENA - Centro de Materiales y Ensayos - Regional Distrito Capital https://orcid.org/0000-0001-6585-9121
  • Oscar Fabian Mayorga Rodríguez SENA Centro de Materiales y Ensayos
  • Cristian Raúl Peña Velandia SENA Centro de Materiales y Ensayos
  • Julián David Rubiano Buitrago Universidad Nacional de Colombia https://orcid.org/0000-0003-3491-8373
  • David Alberto Ramírez Vargas Linde PLC
  • Liz Karen Herrera Quintero Universidad Nacional de Colombia

In this work, 308L stainless steel was deposited via wire arc additive manufacturing, identifying how process variables (voltage, wire feed speed, and travel speed) influence the geometry of the deposit in terms of arc stability, the resulting microstructure, and mechanical properties. Deposits were obtained by varying the voltage from 16 to 20V, the wire feed speed between 4 and 6 m/min, and the travel speed between 240 and 540 mm/min, in order to assess their importance in deposit quality and in the occurrence of defects such as porosity and inclusions. By varying the aforementioned parameters, the response values of the deposit (height and width) were obtained, which is crucial for understanding and controlling the material deposition layer by layer, as well as for properly planning process trajectories. Proper control of welding conditions allows for uniform layers with lower porosity, better internal quality, and an austenitic matrix microstructure with delta ferrite, whose morphology varies with heat input. Finally, through the effective control of height and width, we obtained a thin wall was obtained to evaluate its mechanical behavior. The results demonstrated proper interlayer adhesion as well as anisotropy, particularly regarding tensile strength and ductility, depending on the orientation of the specimens relative to the deposition direction.

En este trabajo, se depositó acero inoxidable 308L mediante fabricación aditiva por arco con hilo, identificando cómo las variables del proceso (voltaje, velocidad de alimentación del alambre y velocidad de avance) influyen en la geometría del depósito en términos de estabilidad del arco, microestructura resultante y propiedades mecánicas. Los depósitos se obtuvieron variando el voltaje entre 16 y 20 V, la velocidad de alimentación del alambre entre 4 y 6 m/min y la velocidad de avance entre 240 y 540 mm/min, con el fin de evaluar su importancia en la calidad del depósito y en la aparición de defectos como porosidad e inclusiones. Al variar los parámetros mencionados, se obtuvieron los valores de respuesta del depósito (altura y ancho), lo cual es fundamental para comprender y controlar la deposición del material capa por capa, así como para planificar adecuadamente las trayectorias del proceso. Un control adecuado de las condiciones de soldadura permite obtener capas uniformes con menor porosidad, mejor calidad interna y una microestructura de matriz austenítica con ferrita delta, cuya morfología varía con el aporte térmico. Finalmente, mediante el control efectivo de la altura y el ancho, se obtuvo una pared delgada para evaluar su comportamiento mecánico. Los resultados demostraron una adecuada adhesión entre capas, así como anisotropía, particularmente en cuanto a la resistencia a la tracción y la ductilidad, dependiendo de la orientación de las probetas con respecto a la dirección de deposición.

References

[1] L. Zhou et al., “Additive manufacturing: A comprehensive review,” Sensors, vol. 24, no. 9, art. 2668, 2024. https://doi.org/10.3390/s24092668

[2] A. Shah, R. Aliyev, H. Zeidler, and S. Krinke, “A review of the recent developments and challenges in wire arc additive manufacturing (WAAM) process,” J. Manuf. Mater. Process., vol. 7, no. 3, art. 97, 2023. https://doi.org/10.3390/jmmp7030097

[3] S. Ford and M. Despeisse, “Additive manufacturing and sustainability: An exploratory study of the advantages and challenges,” J. Clean. Prod., vol. 137, pp. 1573–1587, 2016. https://doi.org/10.1016/j.jclepro.2016.04.150

[4] Additive manufacturing—General principles—Fundamentals and vocabulary, ISO/ASTM 52900:2021, Interna-tional Organization for Standardization, Geneva, Switzerland, 2021.

[5] G. Piscopo, E. Atzeni, A. Saboori, and A. Salmi, “An over-view of the process mechanisms in the laser powder directed energy deposition,” Appl. Sci., vol. 13, no. 1, art. 117, 2023. https://doi.org/10.3390/app13010117

[6] M. M. Imran, A. C. Idris, L. C. De Silva, Y.-B. Kim, and P. E. Abas, “Advancements in 3D printing: Directed energy deposi-tion techniques, defect analysis, and quality monitoring,” Technologies, vol. 12, no. 6, art. 86, 2024. https://doi.org/10.3390/technologies12060086

[7] M. K. Thompson et al., “Design for additive manufacturing: Trends, opportunities, considerations, and constraints,” CIRP Ann. Manuf. Technol., vol. 65, no. 2, pp. 737–760, 2016. https://doi.org/10.1016/j.cirp.2016.05.004

[8] S. W. Williams, F. Martina, A. C. Addison, J. Ding, G. Par-dal, and P. Colegrove, “Wire + arc additive manufacturing,” Mater. Sci. Technol., vol. 32, no. 7, pp. 641–647, 2016. https://doi.org/10.1179/1743284715Y.0000000073

[9] J. D. Rubiano-Buitrago, A. F. Gil-Plazas, L. A. Boyacá-Mendivelso, and L. K. Herrera-Quintero, “Fused filament fabri-cation of WC-10Co hardmetals: A study on binder formula-tions and printing variables,” J. Manuf. Mater. Process., vol. 8, no. 3, art. 118, 2024. https://doi.org/10.3390/jmmp8030118

[10] A.-F. Gil-Plazas, J.-D. Rubiano-Buitrago, L.-A. Boyacá-Mendivelso, and L.-K. Herrera-Quintero, “Solid-state and super solidus liquid phase sintering of 4340 steel SLM powders shaped by fused filament fabrication,” Rev. Fac. Ing., vol. 31, no. 60, art. e13913, 2022. https://doi.org/10.19053/01211129.v31.n60.2022.13913

[11] K. S. Derekar, “A review of wire arc additive manufactur-ing and advances in wire arc additive manufacturing of alu-minium,” Mater. Sci. Technol., vol. 34, no. 8, pp. 895–916, 2018. https://doi.org/10.1080/02670836.2018.1455012

[12] D. Ding, Z. Pan, D. Cuiuri, and H. Li, “Wire-feed additive manufacturing of metal components: Technologies, devel-opments and future interests,” Int. J. Adv. Manuf. Technol., vol. 81, nos. 1–4, pp. 465–481, 2015. https://doi.org/10.1007/s00170-015-7077-3

[13] M. Abuabiah et al., “Advancements in laser wire-feed metal additive manufacturing: A brief review,” Materials, vol. 16, no. 5, art. 2030, 2023. https://doi.org/10.3390/ma16052030

[14] W. Jin et al., “Wire arc additive manufacturing of stainless steels: A review,” Appl. Sci., vol. 10, no. 5, art. 1563, 2020. https://doi.org/10.3390/app10051563

[15] F. R. Teixeira, F. M. Scotti, R. P. Reis, and A. Scotti, “Effect of the CMT advanced process combined with an active cool-ing technique on macro and microstructural aspects of alumi-num WAAM,” Rapid Prototyp. J., vol. 27, no. 6, pp. 1206–1219, 2021. https://doi.org/10.1108/RPJ-11-2020-0285

[16] T. A. Rodrigues et al., “Wire and arc additive manufactur-ing of HSLA steel: Effect of thermal cycles on microstructure and mechanical properties,” Addit. Manuf., vol. 27, pp. 440–450, 2019. https://doi.org/10.1016/j.addma.2019.03.029

[17] P. Kyvelou et al., “Mechanical and microstructural testing of wire and arc additively manufactured sheet material,” Mater. Des., vol. 192, art. 108675, 2020. https://doi.org/10.1016/j.matdes.2020.108675

[18] B. P. Nagasai, S. Malarvizhi, and V. Balasubramanian, “Mechanical properties of wire arc additive manufactured carbon steel cylindrical component made by gas metal arc welding process,” J. Mech. Behav. Mater., vol. 30, no. 1, pp. 188–198, 2021. https://doi.org/10.1515/jmbm-2021-0019

[19] Y. Li, C. Su, and J. Zhu, “Comprehensive review of wire arc additive manufacturing: Hardware system, physical pro-cess, monitoring, property characterization, application and future prospects,” Results Eng., vol. 13, art. 100330, 2022. https://doi.org/10.1016/j.rineng.2021.100330

[20] F. R. Teixeira et al., “A methodology for shielding-gas selection in wire arc additive manufacturing with stainless steel,” Materials, vol. 17, no. 13, art. 3328, 2024. https://doi.org/10.3390/ma17133328

[21] L. Segovia-Guerrero et al., “Influence of printing parame-ters on the morphological characteristics of plasma directed energy-deposited stainless steel,” J. Manuf. Mater. Process., vol. 8, no. 5, art. 233, 2024. https://doi.org/10.3390/jmmp8050233

[22] R. P. Ferreira, L. O. Vilarinho, and A. Scotti, “Development and implementation of a software for wire arc additive manu-facturing preprocessing planning: Trajectory planning and machine code generation,” Weld. World, vol. 66, no. 3, pp. 455–470, 2022. https://doi.org/10.1007/s40194-021-01233-w

[23] F. Michel, H. Lockett, J. Ding, F. Martina, G. Marinelli, and S. Williams, “A modular path planning solution for wire + arc additive manufacturing,” Robot. Comput.-Integr. Manuf., vol. 60, pp. 1–11, 2019. https://doi.org/10.1016/j.rcim.2019.05.009

[24] H. Nagamatsu, H. Sasahara, Y. Mitsutake, and T. Hama-moto, “Development of a cooperative system for wire and arc additive manufacturing and machining,” Addit. Manuf., vol. 31, art. 100896, 2020. https://doi.org/10.1016/j.addma.2019.100896

[25] Y. Yehorov, L. J. da Silva, and A. Scotti, “Balancing WAAM production costs and wall surface quality through parameter selection: A case study of an Al-Mg5 alloy multi-layer non-oscillated single pass wall,” J. Manuf. Mater. Pro-cess., vol. 3, no. 2, art. 32, 2019. https://doi.org/10.3390/jmmp3020032

[26] B. Wu et al., “A review of the wire arc additive manufac-turing of metals: Properties, defects and quality improvement,” J. Manuf. Process., vol. 35, pp. 127–139, 2018. https://doi.org/10.1016/j.jmapro.2018.08.001

[27] L. Wang, J. Chen, C. Wu, and J. Gao, “Backward flowing molten metal in weld pool and its influence on humping bead in high-speed GMAW,” J. Mater. Process. Technol., vol. 237, pp. 342–350, 2016. DOI: https://doi.org/10.1016/j.jmatprotec.2016.06.028

[28] X. Meng, G. Qin, and Z. Zou, “Investigation of humping defect in high-speed gas tungsten arc welding by numerical modelling,” Mater. Des., vol. 94, pp. 69–78, 2016. https://doi.org/10.1016/j.matdes.2016.01.019

[29] E. Kerber et al., “Variable layer heights in wire arc addi-tive manufacturing and WAAM information models,” Ma-chines, vol. 12, art. 432, 2024. https://doi.org/10.3390/machines12070432

[30] N. Solanke and R. M. Metkar, “Optimization of welding process parameters of wire arc additive manufacturing,” J. Phys. Conf. Ser., vol. 2763, art. 012018, 2024. https://doi.org/10.1088/1742-6596/2763/1/012018

[31] O. Panchenko et al., “A high-performance WAAM pro-cess for Al–Mg–Mn using controlled short-circuiting metal transfer at increased wire feed rate and increased travel speed,” Mater. Des., vol. 195, art. 109040, 2020. https://doi.org/10.1016/j.matdes.2020.109040

[32] N. N. Dovzhenko et al., “Structural element shaping on a plate in the manufacture of a hybrid product from aluminum alloy using WAAM technology,” Int. J. Adv. Manuf. Technol., vol. 123, pp. 3183–3204, 2022. https://doi.org/10.1007/s00170-022-10310-3

[33] S. Sharifi, M. Sadeghian, and P. Shamsaei, “Selection of parameters for optimized WAAM structures: Influence of depo-sition strategy and energy input,” Mater. Des., vol. 217, art. 110576, 2022. https://doi.org/10.3390/ma16134862

[34] S. Astafurov and E. Astafurova, “Phase composition of austenitic stainless steels in additive manufacturing: A review,” Metals, vol. 11, no. 7, art. 1052, 2021. https://doi.org/10.3390/met11071052

[35] Y. Koli, S. Aravindan, and P. V. Rao, “Influence of heat input on the evolution of δ-ferrite grain morphology of SS308L fabricated using WAAM-CMT,” Mater. Charact., vol. 194, art. 112363, 2022. https://doi.org/10.1016/j.matchar.2022.112363

[36] J. A. Brooks, N. C. Y. Yang, and J. S. Krafcik, “Clarifica-tion on development of skeletal and lathy ferrite morphologies in stainless steel welds,” Sci. Technol. Weld. Join., vol. 6, no. 6, pp. 412–414, 2001. https://doi.org/10.1179/stw.2001.6.6.412

[37] J. Vora et al., “Experimental investigations on mechanical properties of multi-layered structure fabricated by GMAW-based WAAM of SS316L,” J. Mater. Res. Technol., vol. 20, pp. 2748–2757, 2022. https://doi.org/10.1016/j.jmrt.2022.08.074

[38] P. Long et al., “Microstructure evolution and mechanical properties of a wire-arc additive manufactured austenitic stainless steel: Effect of processing parameter,” Materials, vol. 14, art. 1681, 2021. https://doi.org/10.3390/ma14071681

[39] N. Duraisamy, R. L. Nayak, A. Gokhale, and S. K. Sinha, “Tensile behavior of wire arc additive manufactured stainless steel structure: Microstructure and fracture analysis,” J. Mater. Process. Technol., vol. 268, pp. 177–190, 2019.

How to Cite

APA

Amaya Villabón, T. A., Gil Plazas, A. F., Mayorga Rodríguez, O. F., Peña Velandia, C. R., Rubiano Buitrago, J. D., Ramírez Vargas, D. A. & Herrera Quintero, L. K. (2025). Wire Arc Additive Manufacturing of 308L Stainless Steel: Dimensional Characterization, Arc Stability, Microstructural Evolution, and Mechanical Anisotropy in Thin-Wall Structures. Ingeniería e Investigación, 45(2), e118731. https://doi.org/10.15446/ing.investig.118731

ACM

[1]
Amaya Villabón, T.A., Gil Plazas, A.F., Mayorga Rodríguez, O.F., Peña Velandia, C.R., Rubiano Buitrago, J.D., Ramírez Vargas, D.A. and Herrera Quintero, L.K. 2025. Wire Arc Additive Manufacturing of 308L Stainless Steel: Dimensional Characterization, Arc Stability, Microstructural Evolution, and Mechanical Anisotropy in Thin-Wall Structures. Ingeniería e Investigación. 45, 2 (Aug. 2025), e118731. DOI:https://doi.org/10.15446/ing.investig.118731.

ACS

(1)
Amaya Villabón, T. A.; Gil Plazas, A. F.; Mayorga Rodríguez, O. F.; Peña Velandia, C. R.; Rubiano Buitrago, J. D.; Ramírez Vargas, D. A.; Herrera Quintero, L. K. Wire Arc Additive Manufacturing of 308L Stainless Steel: Dimensional Characterization, Arc Stability, Microstructural Evolution, and Mechanical Anisotropy in Thin-Wall Structures. Ing. Inv. 2025, 45, e118731.

ABNT

AMAYA VILLABÓN, T. A.; GIL PLAZAS, A. F.; MAYORGA RODRÍGUEZ, O. F.; PEÑA VELANDIA, C. R.; RUBIANO BUITRAGO, J. D.; RAMÍREZ VARGAS, D. A.; HERRERA QUINTERO, L. K. Wire Arc Additive Manufacturing of 308L Stainless Steel: Dimensional Characterization, Arc Stability, Microstructural Evolution, and Mechanical Anisotropy in Thin-Wall Structures. Ingeniería e Investigación, [S. l.], v. 45, n. 2, p. e118731, 2025. DOI: 10.15446/ing.investig.118731. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/118731. Acesso em: 27 dec. 2025.

Chicago

Amaya Villabón, Theylor Andres, Andres Fernando Gil Plazas, Oscar Fabian Mayorga Rodríguez, Cristian Raúl Peña Velandia, Julián David Rubiano Buitrago, David Alberto Ramírez Vargas, and Liz Karen Herrera Quintero. 2025. “Wire Arc Additive Manufacturing of 308L Stainless Steel: Dimensional Characterization, Arc Stability, Microstructural Evolution, and Mechanical Anisotropy in Thin-Wall Structures”. Ingeniería E Investigación 45 (2):e118731. https://doi.org/10.15446/ing.investig.118731.

Harvard

Amaya Villabón, T. A., Gil Plazas, A. F., Mayorga Rodríguez, O. F., Peña Velandia, C. R., Rubiano Buitrago, J. D., Ramírez Vargas, D. A. and Herrera Quintero, L. K. (2025) “Wire Arc Additive Manufacturing of 308L Stainless Steel: Dimensional Characterization, Arc Stability, Microstructural Evolution, and Mechanical Anisotropy in Thin-Wall Structures”, Ingeniería e Investigación, 45(2), p. e118731. doi: 10.15446/ing.investig.118731.

IEEE

[1]
T. A. Amaya Villabón, “Wire Arc Additive Manufacturing of 308L Stainless Steel: Dimensional Characterization, Arc Stability, Microstructural Evolution, and Mechanical Anisotropy in Thin-Wall Structures”, Ing. Inv., vol. 45, no. 2, p. e118731, Aug. 2025.

MLA

Amaya Villabón, T. A., A. F. Gil Plazas, O. F. Mayorga Rodríguez, C. R. Peña Velandia, J. D. Rubiano Buitrago, D. A. Ramírez Vargas, and L. K. Herrera Quintero. “Wire Arc Additive Manufacturing of 308L Stainless Steel: Dimensional Characterization, Arc Stability, Microstructural Evolution, and Mechanical Anisotropy in Thin-Wall Structures”. Ingeniería e Investigación, vol. 45, no. 2, Aug. 2025, p. e118731, doi:10.15446/ing.investig.118731.

Turabian

Amaya Villabón, Theylor Andres, Andres Fernando Gil Plazas, Oscar Fabian Mayorga Rodríguez, Cristian Raúl Peña Velandia, Julián David Rubiano Buitrago, David Alberto Ramírez Vargas, and Liz Karen Herrera Quintero. “Wire Arc Additive Manufacturing of 308L Stainless Steel: Dimensional Characterization, Arc Stability, Microstructural Evolution, and Mechanical Anisotropy in Thin-Wall Structures”. Ingeniería e Investigación 45, no. 2 (August 1, 2025): e118731. Accessed December 27, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/118731.

Vancouver

1.
Amaya Villabón TA, Gil Plazas AF, Mayorga Rodríguez OF, Peña Velandia CR, Rubiano Buitrago JD, Ramírez Vargas DA, Herrera Quintero LK. Wire Arc Additive Manufacturing of 308L Stainless Steel: Dimensional Characterization, Arc Stability, Microstructural Evolution, and Mechanical Anisotropy in Thin-Wall Structures. Ing. Inv. [Internet]. 2025 Aug. 1 [cited 2025 Dec. 27];45(2):e118731. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/118731

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Andres Fernando Gil Plazas, Theylor Andres Amaya Villabón, David Alberto Ramírez Vargas, Julián David Rubiano Buitrago, Liz Karen Herrera Quintero. (2025). Influence of interlayer thermal cycling on microstructural evolution in WAAM processed carbon steel. Welding in the World, https://doi.org/10.1007/s40194-025-02227-8.

Dimensions

PlumX

Article abstract page views

241

Downloads

Download data is not yet available.