Published

2025-10-01

Plastic Straw Fibers as an Innovative Material for FRC under Flexural Loading: Statistical and Experimental Analysis

Fibras de pitillo de plástico como material innovador en FRC bajo carga de flexión: análisis estadístico y experimental

DOI:

https://doi.org/10.15446/ing.investig.119189

Keywords:

fiber-reinforced concrete, mechanical properties, polymeric straws, flexural test, recycled materials (en)
concreto reforzado con fibras, propiedades mecánicas, pajillas poliméricas, ensayo de flexión, materiales reciclados (es)

Downloads

Authors

Plastic straws (PS) are often discarded after a brief period of use, contributing significantly to global pollution. This article explores the mechanical properties of fiber-reinforced concrete (FRC) incorporating PS as an innovative reinforcing material. Our study evaluated the tensile strength and overall mechanical performance of concrete in both its fresh and hardened states after the inclusion of PS. To this effect, three tensile tests were performed, as well as 18 workability tests according to ASTM C-143 and 18 flexural tests following ASTM C78. Statistical methods were employed to analyze how the quantity and size of PS impact the mechanical properties of concrete. Although PS exhibited low stiffness and tensile strength, they demonstrated a high deformation capacity compared to other polymers. Additionally, the statistical analysis indicated that the dosage of PS added significantly influences the performance of FRC under flexural loading. Overall, the mechanical performance observed was comparable to that of other FRCs utilizing industrial polymers. This suggests that PS can effectively serve as a reinforcing element in concrete, given their good residual strength, which is a crucial characteristic in applications involving FRC.

Las pajillas de plástico (PS) suelen desecharse tras un breve período de uso, contribuyendo de manera significativa a la contaminación global. Este artículo explora las propiedades mecánicas del concreto reforzado con fibras (FRC) que incorpora PS como un material de refuerzo innovador. Nuestro estudio evaluó la resistencia a la tracción y el desempeño mecánico general del concreto en sus estados fresco y endurecido después de la inclusión de PS. Para ello, se realizaron tres ensayos de tracción, así como 18 ensayos de trabajabilidad conforme a ASTM C-143 y 18 ensayos de flexión siguiendo ASTM C78. Se emplearon métodos estadísticos para analizar la manera en que la cantidad y el tamaño de las PS influyen en las propiedades mecánicas del concreto. Aunque las PS presentaron baja rigidez y resistencia a la tracción, mostraron una alta capacidad de deformación en comparación con otros polímeros. Además, el análisis estadístico indicó que la dosis de PS añadida influye significativamente en el desempeño del FRC bajo carga de flexión. En general, el desempeño mecánico observado fue comparable al de otros FRC con polímeros industriales. Esto sugiere que las PS pueden servir de manera efectiva como elemento de refuerzo en el concreto, dada su buena resistencia residual, una característica crucial en aplicaciones con FRC.

References

[1] C. Fu, H.Ye, K. Wang, K. Zhu and C. He, “Evolution of me-chanical properties of steel fiber-reinforced rubberized concrete (FR-RC),” Compos. B. Eng., vol. 160, pp. 158–166, 2019. https://doi.org/10.1016/j.compositesb.2018.10.045

[2] S.K. Woo, K.J. Kim and S.H. Han, “Tensile cracking constitu-tive model of steel fiber reinforced concrete (SFRC),” KSCE J. Civ. Eng., vol. 18, pp. 1446–1454, 2014. https://doi.org/10.1007/s12205-014-0335-3

[3] S.H. Chu, L.G. Li and A.K.H. Kwan, “Fibre factors governing the fresh and hardened properties of steel FRC,” Constr. Build. Mater., vol. 186, pp. 1228–1238, 2018. https://doi.org/10.1016/j.conbuildmat.2018.08.047

[4] A. Meza-de Luna and P. Pujadas, “Breaking the plastic cycle exploring the mechanical properties of polyethylene terephthalate fiber-reinforced concrete,” in Reuse of Plastic Waste in Eco-Efficient Concrete. Amsterdam, Netherlands: Elsevier S&T Books, 2024, pp 237–253.

[5] A. Meza-de Luna, E. M. Alonso-Guzmán, and A. Bonilla-Petriciolet, “Experimental study of innovative FRC dome-shaped struc-tures with industrial, recycled, and alternative reinforcing under compressive load,” Ing. Inv., vol. 44, no. 1, art. e105266, 2024. https://doi.org/10.15446/ing.investig.105266

[6] A. Meza-de Luna, R. Salinas, V. M. C. F. Cunha, and J. Qi, “ Mechanical characterization of SFRC with annealed and galvanized steel fibers by different test typologies,” Struc. Conc., vol. 26, no. 1, pp. 605–620, 2024. https://doi.org/10.1002/suco.202300051

[7] R. A. Daud, S. A. Daud, and A. A. Al-Azzawi, “Tension stiffening evaluation of steel fibre concrete beams with smooth and deformed reinforcement,” J. King Saud Univ. Sci., vol. 33, pp. 147-152, 2021. https://doi.org/10.1016/j.jksues.2020.03.002

[8] A. Jangid and A. Sharma, “Experimental study on the properties of steel fibre reinforced concrete,” Indian J. Eng. Mater., vol. 17, no. 47, pp. 151-163, 2020. https://www.researchgate.net/publication/339946737_Experimental_study_on_the_properties_of_steel_fibre_reinforced_concrete

[9] K. Marar, Ö. Eren, and H. Roughani, “The influence of amount and aspect ratio of fibers on shear behaviour of steel fiber reinforced concrete,” KSCE J. Civ. Eng., vol. 21, pp. 1393–1399, 2017. https://doi.org/10.1007/s12205-016-0787-2

[10] K. Ragalwar, W. F. Heard, B. A. Williams, D. Kumar, and R. Ranade, “On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber rein-forcement,” Cem. Concr. Compos., vol. 105, art. 103422, 2020. https://doi.org/10.1016/j.cemconcomp.2019.103422

[11] J. Carrillo, W. Aperador, and G. González, “Correlaciones entre las propiedades mecánicas del concreto reforzado con fibras de acero,” Ing. Inv. Tec., vol. 14, no. 3, pp. 435-450, 2013. https://doi.org/10.1016/S1405-7743(13)72256-X

[12] L. Dvorkin, O. Dvorkin, V. Zhitkovsky, and Y. Ribakov, “A method for optimal design of steel fiber reinforced con-crete composition,” Mater. Des., vol. 32, pp. 3254–3262, 2011. https://doi.org/10.1016/j.matdes.2011.02.036

[13] M. A. B. Emon, T. Manzur, and M. S. Sharif, “Suitability of locally manufactured galvanized iron (GI) wire fiber as rein-forcing fiber in brick chip concrete,” Case Stud. Constr. Mater., vol. 7, pp. 217–227, 2017. https://doi.org/10.1016/j.cscm.2017.08.003

[14] J. Carrillo, J. Lizarazo-Marriaga, and F. Lamus, “Properties of steel fiber reinforced concrete using either industrial or recycled fibers from waste tires,” Fibers Polym., vol. 21, pp. 2055–2067, 2020. https://doi.org/10.1007/s12221-020-1076-1

[15] J. Carrillo and C. Díaz, “Propiedades mecánicas de las losas de concreto reforzadas con fibras de acero recicla-das provenientes de llantas usadas en Bogotá, Colombia,” Ciencia Ing. Neogranadina, vol. 30, no. 2, pp. 67–79, 2020. https://doi.org/10.18359/rcin.4412

[16] M. Pajak, “Concrete reinforced with various amounts of steel fibers reclaimed from end-of-life tires,” MATEC Web Conf., vol. 262, art. 06008, 2019. https://doi.org/10.1051/matecconf/201926206008

[17] M.I. Birincioglu, R. S. O. Keskin, and G. Arslan, “Shear strength of steel fiber reinforced concrete deep beams without stirrups,” Adv. Concr. Constr., vol. 13, no. 1, pp. 1-10, 2022. https://doi.org/10.12989/acc.2022.13.1.001

[18] A. Meza, P. Pujadas, L. M Meza, F. Pardo-Bosch, and R. D. López-Carreño, “Mechanical optimization of concrete with recycled PET fibres based on a statistical-experimental study,” Mater., vol. 14, no. 240, 2021. https://doi.org/10.3390/ma14020240

[19] A. Meza and F. U. Ahmed, “Anisotropy and bond behav-iour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement,” Constr. Build. Mater., vol. 265, art. 120331, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120331

[20] A. Meza and S. Siddique, “Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber,” Constr. Build. Mater., vol. 213, pp. 286–291, 2019. https://doi.org/10.1016/j.conbuildmat.2019.04.081

[21] Y. K. Sabapathy, S. Sabarish, C. N. A. Nithish, S. M. Rama-samy, and G. Krishna, “Experimental study on strength properties of aluminium fibre reinforced concrete,” J. King Saud Univ. Eng. Sci., vol. 33, no. 1, pp. 23–29, 2019. https://doi.org/10.1016/j.jksues.2019.12.004

[22] A. C. Bhogayata and N. K. Arora, “Fresh and strength properties of concrete reinforced with metalized plastic waste fibers,” Constr. Build. Mater., vol. 146, pp. 455–463, 2017. http://dx.doi.org/10.1016/j.conbuildmat.2017.04.095

[23] J. S. C. Viera, M. R. C. Marques, C. M. Nazareth, P. C. Jiménez, and Í. B. Castro, “On replacing single-use plastic with so-called biodegradable ones: The case with straws,” Environ. Sci. Policy, vol. 106, pp. 177–181, 2020. https://doi.org/10.1016/j.envsci.2020.02.007

[24] J. Lewis. “Together we are team ocean,” Ocean Con-servancy, 2020. [Online]. Available: https://oceanconservancy.org/wp-content/uploads/2020/10/FINAL_2020ICC_Report.pdf

[25] M. Adamu, P. Trabanpruek, V. Limwibul, P. Jongvivatsa-kul, M. Iwanami, and S. Likitlersuang, “Compressive behav-ior and durability performance of high-volume fly-ash con-crete with plastic waste and graphene nanoplatelets by us-ing response-surface methodology,” J. Mater. Civ. Eng., vol. 34, no. 9, art. 04022222, 2022. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004377

[26] T. Jirawattanasomkul, H. Minakawa, S. Likitlersuang, T. Ueda, J.G. Dai, N. Wuttiwannasak, and N. Kongwang, “Use of water hyacinth waste to produce fibre-reinforced poly-mer composites for concrete confinement: Mechanical per-formance and environmental assessment,” J. Clean. Prod., vol. 292, art. 12604, 2021. https://doi.org/10.1016/j.jclepro.2021.126041

[27] A. de la Rosa, G. Ruiz, and E. Poveda, “Study of the compression behavior of steel-fiber reinforced concrete by means of the response surface methodology,” Appl. Sci., vol. 9, art. 5330, 2019. https://doi.org/10.3390/app9245330

[28] E. Ayan, Ö. Saatçiog, and L. Turanli, “Parameter optimiza-tion on compressive strength of steel fiber reinforced high strength concrete,” Constr. Build. Mater., vol. 25, pp. 2837–2844, 2011. https://doi:10.1016/j.conbuildmat.2010.12.051

[29] J. Carrillo, J. D. Vargas, and S. M. Alcocer, “Model for estimating the flexural performance of concrete reinforced with hooked end steel fibers using three-point bending tests,” Struct. Concr., vol. 22, pp. 1760–1783, 2021. https://doi.org/10.1002/suco.202000432

[30] J. Carrillo, J. A. Ortiz, and J. G. Rueda, “Indirect tensile behavior of hooked-end steel fiber- reinforced concrete under double-punch tests,” ACI Mater. J., vol. 118, no. 5, pp. 93–115, 2021. https://doi.org/10.14359/51732932

[31] J. Carrillo, D. Torres, and H. Guerrero, “Correlation be-tween results obtained from four-point bending tests (4PBT) and double punch tests (DPT) in concrete reinforced with hooked-end steel fibers,” Eng. Struct., vol. 239, art. 112353, 2021. https://doi.org/10.1016/j.engstruct.2021.112353

[32] Standard test method for compressive strength of cylin-drical concrete specimens, ASTM C39/C39M, ASTM Interna-tional, West Conshohocken, PA, USA, 2018.

[33] T. Jirawattanasomkul, S. Likitlersuang, N. Wuttiwannasak, V. Varabuntoonvit, W. Yodsudjai, and T. Ueda, “Fibre-reinforced polymer made from plastic straw for concrete confinement: An alternative method of managing plastic waste from the COVID-19 pandemic,” Eng. J., vol. 5, no. 3, pp. 1-14, 2020. https://doi.org/10.4186/ej.2021.25.3.1

[34] Standard test method for flexural strength of concrete (using simple beam with third-point loading, ASTM C78/C78M, ASTM International, West Conshohocken, PA, USA, 2018.

[35] Standard practice for making and curing concrete test specimens in the laboratory, ASTM C-192, ASTM Interna-tional, West Conshohocken, PA, USA, 2018.

[36] Standard test method for slump of hydraulic-cement concrete, ASTM C-143, ASTM International, West Con-shohocken, PA, USA, 2018.

[37] Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading, ASTM C1018, ASTM International, West Conshohocken, PA, USA, 2005.

[38] G. Kaur, S. P. Singh, and S. K. Kaushik, “Flexural perfor-mance of fibrous concrete with cement additions,” Constr. Mater., vol. 167, pp. 14-25, 2012.

[39] Standard for flexural strength and flexural toughness, method of tests for steel fiber reinforced concrete, JSCE-SF4, Japan Concrete Institute, (JCI), Tokyo, Japan, 1984.

[40] M. N. Soutsos, T. T. Le, and A. P. Lampropoulos, “Flexural performance of fibre reinforced concrete made with steel and synthetic fibres,” Constr. Build. Mater., vol. 36, pp. 704–710, 2012. https://doi.org/10.1016/j.conbuildmat.2012.06.042

[41] O. Fadele, I. N. Oguocha, A. Odeshi, M. Soleimani, and C. Karunakaran, “Characterization of raffia palm fiber for use in polymer composites,” J. Wood Sci., vol. 64, pp. 650–663, 2018. https://doi.org/10.1007/s10086-018-1748-2

[42] Determination of modulus of elasticity and Poisson ratio, NMX-C-128-ONNCCE, Ciudad de México, Mexico, 2013.

[43] M. Bederina et al., “Improvement of the properties of a sand concrete containing barley straws – Treatment of the barley straws,” Constr. Build. Mater., vol. 115, pp. 464–477, 2016. http://dx.doi.org/10.1016/j.conbuildmat.2016.04.065

[44] N. Pešić, S. Živanovića, R. García, and P. Papastergiou, “Mechanical properties of concrete reinforced with recy-cled HDPE plastic fibres,” Constr. Build. Mater., vol. 115, pp. 362–370, 2016. https://doi.org/10.1016/j.conbuildmat.2016.04.050

[45] A. Dehghani and F. Aslani, “Effect of 3D, 4D, and 5D hooked-end type and loading rate on the pull-out perfor-mance of shape memory alloy fibres embedded in ce-mentitious composites,” Constr. and Building Mater., vol. 273, art. 121742, 2021. https://doi.org/10.1016/j.conbuildmat.2020.121742

[46] N. Wiemer et al., “Efect of fibre material and fibre rough-ness on the pullout behaviour of metallic micro fibres em-bedded in UHPC,” Mater., vol. 13, art. 3128, 2020. https://doi.org/10.3390/ma13143128

[47] Concrete Society, “Concrete industrial ground foors—a guide to design and construction,” Technical report 34, Concrete Society, Farmington Hills, MI, US, 2003.

[48] A. Picazo, M. García Alberti, A. Enfedaque, and J. C. Gálvez, “Advantages of using fibres to withstand shear stress: A comparative parametric study with conventionally reinforced concrete beams,” Mater., vol. 18, no. 801, 2025. https://doi.org/10.3390/ma18040801

[49] S. Widodo, R. Alfirahma, A. Prawiranegara, M. F. Amir, and A. Dewi, “Development of eco-friendly self-compacting concrete using fly ash and waste polyethylene terephthalate bottle fiber,” Civil Eng. J., vol. 9, no. 2, pp. 437-452, 2023. dx.doi.org/10.28991/CEJ-2023-09-02-014

[50] N. Z. Nkomo, L. M. Masu, and P. K. Nziu, “Effects of poly-ethylene terephthalate fibre reinforcement on mechanical properties of concrete,” Adv. Mater. Sci. Eng., vol. 2022, art. 4899298, 2022, https://doi.org/10.1155/2022/4899298

[51] M. M. Mwonga, C. Kabubo, and N. Gathimba, “Proper-ties of concrete produced using surface modified polyeth-ylene terephthalate fibres,” Civil Eng. J., vol. 8, no. 6, pp. 1115–1135 , 2022. http://dx.doi.org/10.28991/CEJ-2022-08-06-03

[52] C. Signorini and V. Volpini, “Mechanical performance of fiber reinforced cement composites including fully-recycled plastic fibers,” Fibers, vol. 9, no. 16, 2021. https://doi.org/10.3390/fib9030016

[53] H. H. Z. Khalel, M. Khan, A. Starr, N. Sadawi, O. A. Mo-hamed, A. Khalil, and M. Esaker, “Parametric study for op-timizing fiber-reinforced concrete properties,” Struct. Concr., vol. 26, no. 1, pp. 88-110, 2025. https://doi.org/10.1002/suco.202300509

[54] M. Mastali, A. Dalvand, A. R. Sattarifard, Z. Abdollahne-jad, and M. Illikainen, “Characterization and optimization of hardened properties of selfconsolidating concrete in-corporating recycled steel, industrial steel, polypropylene and hybrid fibers,” Comp. Part B, vol. 151, pp. 186–200, 2018. https://doi.org/10.1016/j.compositesb.2018.06.021

[55] F. U. A. Shaikh, “Tensile and flexural behaviour of recycled polyethylene terephthalate (PET) fibre reinforced geopoly-mer composites,” Constr. Build. Mater., vol. 245, art. 118438, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118438

[56] W. Chen and Y. Wen, “Experimental study on mechanical and durability properties of concrete incorporating various polyvinyl alcohol fiber lengths and dosages,” Mater. Con-str., vol. 74, no. 355,, art. e349, 2024. https://doi.org/10.3989/mc.2024.368923

[57] S. K. Lee, T. Oh, N. Banthia, and D. Y. Yoo, “Optimization of fiber aspect ratio for 90 MPa strain-hardening geopoly-mer composites (SHGC) with a tensile strain capacity over 7.5%,” Cem. Concr. Compos., vol. 139, art. 105055, 2023. https://doi.org/10.1016/j.cemconcomp.2023.105055

How to Cite

APA

Meza, A., Salinas, R. & Carrillo, J. (2025). Plastic Straw Fibers as an Innovative Material for FRC under Flexural Loading: Statistical and Experimental Analysis. Ingeniería e Investigación, 45(2), e119189. https://doi.org/10.15446/ing.investig.119189

ACM

[1]
Meza, A., Salinas, R. and Carrillo, J. 2025. Plastic Straw Fibers as an Innovative Material for FRC under Flexural Loading: Statistical and Experimental Analysis. Ingeniería e Investigación. 45, 2 (Aug. 2025), e119189. DOI:https://doi.org/10.15446/ing.investig.119189.

ACS

(1)
Meza, A.; Salinas, R.; Carrillo, J. Plastic Straw Fibers as an Innovative Material for FRC under Flexural Loading: Statistical and Experimental Analysis. Ing. Inv. 2025, 45, e119189.

ABNT

MEZA, A.; SALINAS, R.; CARRILLO, J. Plastic Straw Fibers as an Innovative Material for FRC under Flexural Loading: Statistical and Experimental Analysis. Ingeniería e Investigación, [S. l.], v. 45, n. 2, p. e119189, 2025. DOI: 10.15446/ing.investig.119189. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/119189. Acesso em: 26 dec. 2025.

Chicago

Meza, Alejandro, Rogelio Salinas, and Julián Carrillo. 2025. “Plastic Straw Fibers as an Innovative Material for FRC under Flexural Loading: Statistical and Experimental Analysis”. Ingeniería E Investigación 45 (2):e119189. https://doi.org/10.15446/ing.investig.119189.

Harvard

Meza, A., Salinas, R. and Carrillo, J. (2025) “Plastic Straw Fibers as an Innovative Material for FRC under Flexural Loading: Statistical and Experimental Analysis”, Ingeniería e Investigación, 45(2), p. e119189. doi: 10.15446/ing.investig.119189.

IEEE

[1]
A. Meza, R. Salinas, and J. Carrillo, “Plastic Straw Fibers as an Innovative Material for FRC under Flexural Loading: Statistical and Experimental Analysis”, Ing. Inv., vol. 45, no. 2, p. e119189, Aug. 2025.

MLA

Meza, A., R. Salinas, and J. Carrillo. “Plastic Straw Fibers as an Innovative Material for FRC under Flexural Loading: Statistical and Experimental Analysis”. Ingeniería e Investigación, vol. 45, no. 2, Aug. 2025, p. e119189, doi:10.15446/ing.investig.119189.

Turabian

Meza, Alejandro, Rogelio Salinas, and Julián Carrillo. “Plastic Straw Fibers as an Innovative Material for FRC under Flexural Loading: Statistical and Experimental Analysis”. Ingeniería e Investigación 45, no. 2 (August 1, 2025): e119189. Accessed December 26, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/119189.

Vancouver

1.
Meza A, Salinas R, Carrillo J. Plastic Straw Fibers as an Innovative Material for FRC under Flexural Loading: Statistical and Experimental Analysis. Ing. Inv. [Internet]. 2025 Aug. 1 [cited 2025 Dec. 26];45(2):e119189. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/119189

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

81

Downloads

Download data is not yet available.