Training a multilayer neural network for the Euro-dollar (EUR/ USD) exchange rate
Entrenamiento de una red neuronal multicapa para la tasa de cambio euro - dólar (EUR/USD)
DOI:
https://doi.org/10.15446/ing.investig.v27n3.14851Keywords:
artificial neural network, chemotaxis, FOREX, trading strategy (en)chemotaxis, estrategias de negociación, Forex, redes neuronales artificiales, redes multicapa, JEL, F310, C450 (es)
Downloads
A mathematical tool or model for predicting how an economic variable like the exchange rate (relative price between two currencies) will respond is a very important need for investors and policy-makers. Most current techniques are based on statistics, particularly linear time series theory. Artificial neural networks (ANNs) are mathematical models which try to emulate biological neural networks’ parallelism and nonlinearity; these models have been successfully applied in Economics and Engineering since the 1980s. ANNs appear to be an alternative for modelling the behavior of financial variables which resemble (as first approximation) a random walk. This paper reports the results of using ANNs for Euro/USD exchange rate trading and the usefulness of the algorithm tor chemotaxis leading to training networks thereby maximising an objective function re predicting a trader’s profits. JEL: F310, C450.
Tanto para los inversionistas como para las autoridades económicas es necesario que se desarrolle una herramienta matemática que logre dar cuenta de la dirección de una variable como el tipo de cambio (el precio relativo entre dos monedas). Muchos de los mecanismos usados actualmente están basados en el uso de técnicas estadísticas, en particular series de tiempo lineales. Las redes neuronales artificiales (RNA) son modelos matemáticos que pretenden emular el funcionamiento del cerebro humano, su aplicación en economía e ingeniería surge a finales de los años ochenta con buenos resultados. Las RNA se presentan como una alternativa para simular el comportamiento de variables financieras que, por lo general, tienden a parecerse a un paseo aleatorio. En este trabajo se muestran los resultados del entrenamiento de una red neuronal para negociación de la tasa de cambio EUR/USD y las bondades del algoritmo de entrenamiento chemotaxis, que permite entrenar redes que maximicen una función objetivo que relacione aciertos en la predicción con las ganancias de un trader.
References
Bremermann, H.J, Anderson, R.W., How the Brain Adjusts Synapses -Maybe., En: Automated Reasoning. Essays in Honor of Woody Bledsoe, Robert S. Boyer (Ed.), Boston, Kluwer Academic Publishers, 1991. DOI: https://doi.org/10.1007/978-94-011-3488-0_6
Delgado, A., Inteligencia Artificial y MiniRobots., Bogotá, Ecoe Ediciones, 1998.
Delgado, A., Control of Nonlinear Systems Using a Self-Organising Neural Network., Neural Computing & Applications, No. 9, 2000, pp. 113-123. DOI: https://doi.org/10.1007/s005210070022
Dunis, C., Willians, M., Modelling and Trading the EUR/USD Exchange Rate: Do Neural Network Models Perform Better? Liverpool Business School, Working Paper, 2002. Disponible en: www.cibef.com
Fama. E., The Behaviour of Stock Market Prices., Journal of Business, No. 38, 1969, pp. 34-105. DOI: https://doi.org/10.1086/294743
Fama. E., Efficient Capital Markets: A Review of Theory and Empirical Work., Journal of Finance, N° 25, 1970, pp. 383-417. DOI: https://doi.org/10.1111/j.1540-6261.1970.tb00518.x
Funahashi, K.Y., On the Approximate Realization of Continuous Mapping by Three Neural Networks., Electronics and Communications in Japan, Part 3, No.73, 1989, pp. 61-68. DOI: https://doi.org/10.1002/ecjc.4430731107
Gibb, J., Back Propagation Family Album., Technical Report C/TR96-05, Macquarie University, August, 1996. Disponible en: http://citeseer.ist.psu.edu/gibb96back.html
Haykin, S., Neuronal Networks: A Comprehensive Foundation, New York, McMillan College Publishing Company, 1994.
Kröse, B., van der Smagt, P., An Introduction to Neural Networks, The University of Amsterdam. November, 1996. Disponible en: http://citeseer.ist.psu.edu/ose96introduction.html
Kuan, C-M., Liu, T., Forecasting Exchange Rates using Feedforward and Recurrent Neural Networks., Journal of Applied Econometrics, Vol 10, 1995, pp. 347-364. DOI: https://doi.org/10.1002/jae.3950100403
McCulloch, W.S., Pitts, W., A Logical Calculus of the Ideas Immanent in Nervous Activity., Bulletin of Mathematical Biophysics, N°5, 1943, pp. 115-133. DOI: https://doi.org/10.1007/BF02478259
Minsky, M., Papert, S., Perceptrons: An Introduction to Computational Geometry., Cambridge, MA, MIT Press, 1969.
Peña, D., Estadística, Modelos y Métodos. Fundamentos, Alianza Editorial, 1998.
Pesaran, M., Timmermann, A., A Simple Nonparametric Test of Predictive Performance., Journal of Business and Economic Statistics, Vol 10, No 4: 1992, pp. 461-65. DOI: https://doi.org/10.1080/07350015.1992.10509922
Sarle, W.S., Neural Networks Implementation in SAS., Proceedings of the Nineteenth Annual SAS Users Group International Conference, April, 1994. Disponible en: http://citeseer.ist.psu.edu/36580.html
Wong, F., Tan, C., Hybrid Neural, Genetic and Fuzzy Systems., En: Trading on the Edge. Neural, Genetic and Fuzzy Systems for Chaotic Financial Markets., Guido J. Deboek (Ed.)., John Wiley and Sons. Inc., 1994.
Yao, J., Tan, L., A Case of Study on using Neural Networks to perform Technical Forecasting of FOREX., Neurocomputing, No. 34, 2000, pp. 79 - 98. Disponible en: http://citeseer.ist.psu.edu/yao00case.html DOI: https://doi.org/10.1016/S0925-2312(00)00300-3
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Jimmy Rafael Landaburu Mendoza, Luz María Quinde Arreaga, Nuvia Aurora Zambrano Barros, Adolfo Hernán Elizondo Saltos. (2023). Aplicación de series de tiempo en valores de activos financieros. Religación, 8(38), p.e2301117. https://doi.org/10.46652/rgn.v8i38.1117.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2007 Jaime Alberto Villamil Torres, Jesús Alberto Delgado Rivera
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.