Published

2008-01-01

Natural elements’ methods applied to structural problems

Aplicación del método de elementos naturales a problemas estructurales

DOI:

https://doi.org/10.15446/ing.investig.v28n1.14862

Keywords:

meshless method, natural element method, finite element method, natural neighbour interpolation (en)
métodos sin malla, método de elementos naturales, método de elementos finitos, interpolación por vecinos naturales (es)

Authors

  • Libardo Andrés González Torres Universidad Nacional de Colombia
  • Diego Alexander Garzón Alvarado Universidad Nacional de Colombia
  • Máximo Alejandro Roa Garzón Universidad Nacional de Colombia

This paper was aimed at reviewing the theory and numerical implementations of the natural elements method (NEM, meshless method) used for resolving structural problems. An exact analytical solution and the finite element method were used for comparing the results obtained for two lineal-elastic structural problems in two spatial dimensions. The interpolation procedure used by the method for obtaining the trial functions and the most important features of the standard NEM are described. The results of two simulations concerning structural problems are presented using a code written in Matlab 6.5 for resolving differential lineal elasticity equations in two dimensional domains it was found that NEM is similar to the finite element method in terms of stability and convergence, having the advantage of mesh being automatically produced and the approximated solution not depending on the distribution of the node cloud, thereby defining the geometric domain.

El objetivo del presente artículo se enmarca en la revisión de la teoría y la implementación numérica de uno de los métodos numéricos sin malla usados para la solución de problemas de tipo estructural, el método de los elementos naturales (MEN), junto con la contrastación de los resultados obtenidos para dos problemas estructurales elásticolineales en dos dimensiones con la solución analítica exacta y la aproximada por el método de los elementos finitos (MEF). Se describe la técnica de interpolación usada por el MEN para obtener las funciones de forma y se presentan las características más importantes del método en su forma estándar. Se presentan los resultados de dos simulaciones de problemas estructurales realizadas usando un código escrito en Matlab 6.5 para la solución de ecuaciones diferenciales de elasticidad lineal en dominios bidimensionales. Se concluye que el método de los elementos naturales es similar al de los elementos finitos en cuanto a estabilidad y convergencia, con la ventaja de que la malla es generada automáticamente y la no dependencia de la solución aproximada con la distribución de la nube de puntos que define la geometría.

References

Alfaro, I., Bel, D., Cueto, E., Doblare, M., Chinesta, F., Three-dimensional simulation of aluminium extrusion by the [alpha]-shape based natural element method., Computer Methods in Applied Mechanics and Engineering. Vol. 195, No. 33-36, 1 July 2006, pp. 4269-4286. DOI: https://doi.org/10.1016/j.cma.2005.08.006

Berg, M., Cheong, O., Van Kreveld, M., Overmars, M., Computational Geometry: Algorithms and Applications., 3rd ed, Springer, 2008.

Cai, Y., Zhu, H., A local search algorithm for natural neighbours in the natural element method, International Journal of Solids and Structures, Vol. 42, No. 23, 2005, pp. 6059-6070. DOI: https://doi.org/10.1016/j.ijsolstr.2005.04.006

Chew, C.S., Yeo K.S., Shu, C., A generalized finite difference (GFD) ALE scheme for incompressible flows a round moving solid bodies on hybrid meshfree-Cartesian grids., Journal of Computational Physics, Vol. 218, No. 2, 1 November 2006, pp. 510-548. DOI: https://doi.org/10.1016/j.jcp.2006.02.025

Cueto, E., El Método de los Elementos Naturales basado en formas-α (MEN-α): Aplicación a la simulación de la remodelación interna de fracturas de cadera con sistema Éxeter)., Tesis presentada a la Universidad de Zaragoza, Zaragoza para optar al título de Doctor, 2001.

Cueto, E., Sukumar, N., Calvo, B., Cegoñino, J., Doblaré, M., Overview and Recent Advances in Natural Neighbour Galerkin Methods., Archives of Computational Methods in Engineering, Vol. 10, No. 4, 2003. pp. 307-384. DOI: https://doi.org/10.1007/BF02736253

De Arantes e Oliveira, E. R., From formal solutions to computational methods avoiding passages to the limit., Engineering Analysis with Boundary Elements, Vol. 29, No. 4, Mesh Reduction Methods - Part III, 2005, pp. 305-312. DOI: https://doi.org/10.1016/j.enganabound.2005.01.003

Deeks, A. J., Augarde, Ch. E., A hybrid meshless local Petrov-Galerkin method for unbounded domains, Computer Methods in Applied Mechanics and Engineering, Vol. 196, No. 4-6, 1 January 2007, pp. 843-852. DOI: https://doi.org/10.1016/j.cma.2006.06.011

Del Coz Díaz, J. J., García Nieto, P. J., Vilan Vilan, J. A., Rodriguez, A. M., Prado Tamargo, J. R., Lozano Martinez Luengas, A., Non-linear analysis and warping of tubular pipe conveyors by the finite element method, Mathematical and Computer Modelling, Vol. 46, No. 1-2, Proceedings of the International Conference on Computational Methods in Sciences and Engineering, 2004, July 2007, pp. 95-108. DOI: https://doi.org/10.1016/j.mcm.2006.12.034

Doblare, M., Cueto, E., Calvo, B., Martínez, M. A., Garcia, J. M., Cegonino, J., On the employ of meshless methods in biomechanics, Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 6-8, 2005, pp. 801-821. DOI: https://doi.org/10.1016/j.cma.2004.06.031

Dunn, S. M., Constantinides, A., Mo-ghe, P. V., Finite Difference Methods, Interpolation and Integration., Numerical Methods in Biomedical Engineering, Academic Press, Burlington, 2006, pp. 163-208. DOI: https://doi.org/10.1016/B978-012186031-8/50006-6

Cho, J. R., Lee, H. W., 2-D frictionless dynamic contact analysis of large deformable bodies by Petrov-Galerkin natural element method., Computers & Structures, Vol. 85, No. 15-16, August 2007, pp. 1230-1242. DOI: https://doi.org/10.1016/j.compstruc.2006.11.024

González, D., Cueto, E., Martínez, M. A., Doblaré, M., Integración numérica en métodos de Galerkin de Vecindad natural., Actas del Congreso Español de Ecuaciones diferenciales y Aplicaciones (CEDYA 2003), Tarragona (España), 2003.

González, L. A., Aplicación del método de los elementos naturales a problemas estructurales., Tesis de pregrado. Universidad Nacional de Colombia, 2004.

Griffiths, D. V., Numerical methods for engineers: a programming approach., Editor Boca Ratón, Florida, 1991.

Hajri I., Omri, A., Ben Nasrallah, S., A numerical model for the simulation of double-diffusive natural convection in a triangular cavity using equal order and control volume based on the finite element method., Desalination, Vol. 206, No. 1-3, 2007, pp. 579-588. DOI: https://doi.org/10.1016/j.desal.2006.03.581

Kwon, Y. W., Bang, H., The finite element method using matlab., second edition, Editor Frank Kreith, 2000.

Lademo, O.-G., Berstad, T., Eriksson, M., Tryland, T., Furu, T., Hopperstad O. S., Langseth, M., A model for process based crash simulation., International Journal of Impact Engineering, Vol. 35, No. 5, May 2008, pp. 376-388. DOI: https://doi.org/10.1016/j.ijimpeng.2007.03.004

Mal, A. K., Singh, S. J., Deformation of elastic solids., Prentice Hall, New Jersey,1991.

Olivella, X O., De Saracíbar, C. B., Mecánica de medios continuos para ingenieros, Alfaomega, México, 2002.

Ollivier-Gooch, C., A toolkit for numerical simulation of PDEs: I. Fundamentals of generic finite-volume simulation., Computer Methods in Applied Mechanics and Engineering. Vol.192, No. 9-10, 28, 2003, pp. 1147-1175. DOI: https://doi.org/10.1016/S0045-7825(02)00602-3

Oñate, E., Rojek, J., Taylor, R. L., Zienkiewicz, O. C., Finite calculus formulation for incompressible solids using linear triangles and tetrahedral., Int. J. Number. Methods Eng. 59, 2004, pp. 1473–1500. DOI: https://doi.org/10.1002/nme.922

Pena, E., Martinez, M. A., Calvo, B., Doblare, M., Application of the natural element method to finite deformation inelastic problems in isotropic and fiber-reinforced biological soft tissues, Computer Methods in Applied Mechanics and Engineering In Press, Corrected Proof, Available online 15 January 2008. DOI: https://doi.org/10.1016/j.cma.2007.12.018

Prabhakar, V., Reddy, J. N., Spectral/hp penalty least-squares finite element formulation for the steady incompressible Navier-Stokes equations., Journal of Computational Physics. Vol. 215, No. 1, 10 June 2006, pp. 274-297. DOI: https://doi.org/10.1016/j.jcp.2005.10.033

Saad, Y., Iterative Methods for sparse linear systems., 2ed, 2000. DOI: https://doi.org/10.1016/S1570-579X(01)80025-2

Sukumar, N., The Natural Element Method in Solid Mechanics., Tesis presentada a la Northwestern University, Evanston, Illinois, Para optar por el título de Ph. D, 1998.

Timoshenko, S., Goodier J., Teoría de Elasticidad, Editorial urmo, 1972.

How to Cite

APA

González Torres, L. A., Garzón Alvarado, D. A. & Roa Garzón, M. A. (2008). Natural elements’ methods applied to structural problems. Ingeniería e Investigación, 28(1), 5–14. https://doi.org/10.15446/ing.investig.v28n1.14862

ACM

[1]
González Torres, L.A., Garzón Alvarado, D.A. and Roa Garzón, M.A. 2008. Natural elements’ methods applied to structural problems. Ingeniería e Investigación. 28, 1 (Jan. 2008), 5–14. DOI:https://doi.org/10.15446/ing.investig.v28n1.14862.

ACS

(1)
González Torres, L. A.; Garzón Alvarado, D. A.; Roa Garzón, M. A. Natural elements’ methods applied to structural problems. Ing. Inv. 2008, 28, 5-14.

ABNT

GONZÁLEZ TORRES, L. A.; GARZÓN ALVARADO, D. A.; ROA GARZÓN, M. A. Natural elements’ methods applied to structural problems. Ingeniería e Investigación, [S. l.], v. 28, n. 1, p. 5–14, 2008. DOI: 10.15446/ing.investig.v28n1.14862. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14862. Acesso em: 25 dec. 2025.

Chicago

González Torres, Libardo Andrés, Diego Alexander Garzón Alvarado, and Máximo Alejandro Roa Garzón. 2008. “Natural elements’ methods applied to structural problems”. Ingeniería E Investigación 28 (1):5-14. https://doi.org/10.15446/ing.investig.v28n1.14862.

Harvard

González Torres, L. A., Garzón Alvarado, D. A. and Roa Garzón, M. A. (2008) “Natural elements’ methods applied to structural problems”, Ingeniería e Investigación, 28(1), pp. 5–14. doi: 10.15446/ing.investig.v28n1.14862.

IEEE

[1]
L. A. González Torres, D. A. Garzón Alvarado, and M. A. Roa Garzón, “Natural elements’ methods applied to structural problems”, Ing. Inv., vol. 28, no. 1, pp. 5–14, Jan. 2008.

MLA

González Torres, L. A., D. A. Garzón Alvarado, and M. A. Roa Garzón. “Natural elements’ methods applied to structural problems”. Ingeniería e Investigación, vol. 28, no. 1, Jan. 2008, pp. 5-14, doi:10.15446/ing.investig.v28n1.14862.

Turabian

González Torres, Libardo Andrés, Diego Alexander Garzón Alvarado, and Máximo Alejandro Roa Garzón. “Natural elements’ methods applied to structural problems”. Ingeniería e Investigación 28, no. 1 (January 1, 2008): 5–14. Accessed December 25, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/14862.

Vancouver

1.
González Torres LA, Garzón Alvarado DA, Roa Garzón MA. Natural elements’ methods applied to structural problems. Ing. Inv. [Internet]. 2008 Jan. 1 [cited 2025 Dec. 25];28(1):5-14. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14862

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

466

Downloads

Download data is not yet available.

Most read articles by the same author(s)