Natural elements’ methods applied to structural problems
Aplicación del método de elementos naturales a problemas estructurales
DOI:
https://doi.org/10.15446/ing.investig.v28n1.14862Keywords:
meshless method, natural element method, finite element method, natural neighbour interpolation (en)métodos sin malla, método de elementos naturales, método de elementos finitos, interpolación por vecinos naturales (es)
Downloads
This paper was aimed at reviewing the theory and numerical implementations of the natural elements method (NEM, meshless method) used for resolving structural problems. An exact analytical solution and the finite element method were used for comparing the results obtained for two lineal-elastic structural problems in two spatial dimensions. The interpolation procedure used by the method for obtaining the trial functions and the most important features of the standard NEM are described. The results of two simulations concerning structural problems are presented using a code written in Matlab 6.5 for resolving differential lineal elasticity equations in two dimensional domains it was found that NEM is similar to the finite element method in terms of stability and convergence, having the advantage of mesh being automatically produced and the approximated solution not depending on the distribution of the node cloud, thereby defining the geometric domain.
El objetivo del presente artículo se enmarca en la revisión de la teoría y la implementación numérica de uno de los métodos numéricos sin malla usados para la solución de problemas de tipo estructural, el método de los elementos naturales (MEN), junto con la contrastación de los resultados obtenidos para dos problemas estructurales elásticolineales en dos dimensiones con la solución analítica exacta y la aproximada por el método de los elementos finitos (MEF). Se describe la técnica de interpolación usada por el MEN para obtener las funciones de forma y se presentan las características más importantes del método en su forma estándar. Se presentan los resultados de dos simulaciones de problemas estructurales realizadas usando un código escrito en Matlab 6.5 para la solución de ecuaciones diferenciales de elasticidad lineal en dominios bidimensionales. Se concluye que el método de los elementos naturales es similar al de los elementos finitos en cuanto a estabilidad y convergencia, con la ventaja de que la malla es generada automáticamente y la no dependencia de la solución aproximada con la distribución de la nube de puntos que define la geometría.
References
Alfaro, I., Bel, D., Cueto, E., Doblare, M., Chinesta, F., Three-dimensional simulation of aluminium extrusion by the [alpha]-shape based natural element method., Computer Methods in Applied Mechanics and Engineering. Vol. 195, No. 33-36, 1 July 2006, pp. 4269-4286. DOI: https://doi.org/10.1016/j.cma.2005.08.006
Berg, M., Cheong, O., Van Kreveld, M., Overmars, M., Computational Geometry: Algorithms and Applications., 3rd ed, Springer, 2008.
Cai, Y., Zhu, H., A local search algorithm for natural neighbours in the natural element method, International Journal of Solids and Structures, Vol. 42, No. 23, 2005, pp. 6059-6070. DOI: https://doi.org/10.1016/j.ijsolstr.2005.04.006
Chew, C.S., Yeo K.S., Shu, C., A generalized finite difference (GFD) ALE scheme for incompressible flows a round moving solid bodies on hybrid meshfree-Cartesian grids., Journal of Computational Physics, Vol. 218, No. 2, 1 November 2006, pp. 510-548. DOI: https://doi.org/10.1016/j.jcp.2006.02.025
Cueto, E., El Método de los Elementos Naturales basado en formas-α (MEN-α): Aplicación a la simulación de la remodelación interna de fracturas de cadera con sistema Éxeter)., Tesis presentada a la Universidad de Zaragoza, Zaragoza para optar al título de Doctor, 2001.
Cueto, E., Sukumar, N., Calvo, B., Cegoñino, J., Doblaré, M., Overview and Recent Advances in Natural Neighbour Galerkin Methods., Archives of Computational Methods in Engineering, Vol. 10, No. 4, 2003. pp. 307-384. DOI: https://doi.org/10.1007/BF02736253
De Arantes e Oliveira, E. R., From formal solutions to computational methods avoiding passages to the limit., Engineering Analysis with Boundary Elements, Vol. 29, No. 4, Mesh Reduction Methods - Part III, 2005, pp. 305-312. DOI: https://doi.org/10.1016/j.enganabound.2005.01.003
Deeks, A. J., Augarde, Ch. E., A hybrid meshless local Petrov-Galerkin method for unbounded domains, Computer Methods in Applied Mechanics and Engineering, Vol. 196, No. 4-6, 1 January 2007, pp. 843-852. DOI: https://doi.org/10.1016/j.cma.2006.06.011
Del Coz Díaz, J. J., García Nieto, P. J., Vilan Vilan, J. A., Rodriguez, A. M., Prado Tamargo, J. R., Lozano Martinez Luengas, A., Non-linear analysis and warping of tubular pipe conveyors by the finite element method, Mathematical and Computer Modelling, Vol. 46, No. 1-2, Proceedings of the International Conference on Computational Methods in Sciences and Engineering, 2004, July 2007, pp. 95-108. DOI: https://doi.org/10.1016/j.mcm.2006.12.034
Doblare, M., Cueto, E., Calvo, B., Martínez, M. A., Garcia, J. M., Cegonino, J., On the employ of meshless methods in biomechanics, Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 6-8, 2005, pp. 801-821. DOI: https://doi.org/10.1016/j.cma.2004.06.031
Dunn, S. M., Constantinides, A., Mo-ghe, P. V., Finite Difference Methods, Interpolation and Integration., Numerical Methods in Biomedical Engineering, Academic Press, Burlington, 2006, pp. 163-208. DOI: https://doi.org/10.1016/B978-012186031-8/50006-6
Cho, J. R., Lee, H. W., 2-D frictionless dynamic contact analysis of large deformable bodies by Petrov-Galerkin natural element method., Computers & Structures, Vol. 85, No. 15-16, August 2007, pp. 1230-1242. DOI: https://doi.org/10.1016/j.compstruc.2006.11.024
González, D., Cueto, E., Martínez, M. A., Doblaré, M., Integración numérica en métodos de Galerkin de Vecindad natural., Actas del Congreso Español de Ecuaciones diferenciales y Aplicaciones (CEDYA 2003), Tarragona (España), 2003.
González, L. A., Aplicación del método de los elementos naturales a problemas estructurales., Tesis de pregrado. Universidad Nacional de Colombia, 2004.
Griffiths, D. V., Numerical methods for engineers: a programming approach., Editor Boca Ratón, Florida, 1991.
Hajri I., Omri, A., Ben Nasrallah, S., A numerical model for the simulation of double-diffusive natural convection in a triangular cavity using equal order and control volume based on the finite element method., Desalination, Vol. 206, No. 1-3, 2007, pp. 579-588. DOI: https://doi.org/10.1016/j.desal.2006.03.581
Kwon, Y. W., Bang, H., The finite element method using matlab., second edition, Editor Frank Kreith, 2000.
Lademo, O.-G., Berstad, T., Eriksson, M., Tryland, T., Furu, T., Hopperstad O. S., Langseth, M., A model for process based crash simulation., International Journal of Impact Engineering, Vol. 35, No. 5, May 2008, pp. 376-388. DOI: https://doi.org/10.1016/j.ijimpeng.2007.03.004
Mal, A. K., Singh, S. J., Deformation of elastic solids., Prentice Hall, New Jersey,1991.
Olivella, X O., De Saracíbar, C. B., Mecánica de medios continuos para ingenieros, Alfaomega, México, 2002.
Ollivier-Gooch, C., A toolkit for numerical simulation of PDEs: I. Fundamentals of generic finite-volume simulation., Computer Methods in Applied Mechanics and Engineering. Vol.192, No. 9-10, 28, 2003, pp. 1147-1175. DOI: https://doi.org/10.1016/S0045-7825(02)00602-3
Oñate, E., Rojek, J., Taylor, R. L., Zienkiewicz, O. C., Finite calculus formulation for incompressible solids using linear triangles and tetrahedral., Int. J. Number. Methods Eng. 59, 2004, pp. 1473–1500. DOI: https://doi.org/10.1002/nme.922
Pena, E., Martinez, M. A., Calvo, B., Doblare, M., Application of the natural element method to finite deformation inelastic problems in isotropic and fiber-reinforced biological soft tissues, Computer Methods in Applied Mechanics and Engineering In Press, Corrected Proof, Available online 15 January 2008. DOI: https://doi.org/10.1016/j.cma.2007.12.018
Prabhakar, V., Reddy, J. N., Spectral/hp penalty least-squares finite element formulation for the steady incompressible Navier-Stokes equations., Journal of Computational Physics. Vol. 215, No. 1, 10 June 2006, pp. 274-297. DOI: https://doi.org/10.1016/j.jcp.2005.10.033
Saad, Y., Iterative Methods for sparse linear systems., 2ed, 2000. DOI: https://doi.org/10.1016/S1570-579X(01)80025-2
Sukumar, N., The Natural Element Method in Solid Mechanics., Tesis presentada a la Northwestern University, Evanston, Illinois, Para optar por el título de Ph. D, 1998.
Timoshenko, S., Goodier J., Teoría de Elasticidad, Editorial urmo, 1972.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2008 Libardo Andrés González Torres, Diego Alexander Garzón Alvarado, Máximo Alejandro Roa Garzón

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.










