Published

2008-01-01

Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories

Estimación de la susceptibilidad ante deslizamientos: aplicación de conjuntos difusos y las teorías de la posibilidad y de la evidencia

DOI:

https://doi.org/10.15446/ing.investig.v28n1.14865

Keywords:

landslide, susceptibility, uncertainty, possibility theory, evidence-based theory (en)
deslizamientos, susceptibilidad, incertidumbre, conjuntos difusos, teoría de posibilidad, teoría de la evidencia (es)

Authors

  • Ibsen Chivatá Cárdenas Instituto de investigaciones sobre incertidumbre

A landslide susceptibility model was developed for the city of Manizales, Colombia; landslides have been the city’s main environmental problem. Fuzzy sets and possibility and evidence-based theories were used to construct the model due to the set of circumstances and uncertainty involved in the modelling; uncertainty particularly concerned the lack of representative data and the need for systematically coordinating subjective information. Susceptibility and the uncertainty were estimated via data processing; the model contained data concerning mass vulnerability and uncertainty. Output data was expressed on a map defined by linguistic categories or uncertain labels as having low, medium, high and very high susceptibility; this was considered appropriate for representing susceptibility. A fuzzy spectrum was developed for classifying susceptibility levels according to perception and expert opinion. The model showed levels of susceptibility in the study area, ranging from low to high susceptibility (medium susceptibility being more frequent). This article shows the details concerning systematic data processing by presenting theories and tools regarding uncertainty. The concept of fuzzy parameters is introduced; this is useful in modelling phenomena regarding uncertainty, complexity and nonlinear performance, showing that susceptibility modelling can be feasible. The paper also shows the great convenience of incorporating uncertainty into modelling and decision-making. However, quantifying susceptibility is not suitable when modelling identified uncertainty because incorporating model output information cannot be reduced into exact or real numerical quantities when the nature of the variables is particularly uncertain. The latter concept is applicable to risk assessment.

Se muestra el proceso de estimación de un modelo de susceptibilidad por deslizamientos inducidos por lluvia para la ciudad de Manizales, capital en donde la ocurrencia de deslizamientos es el principal problema ambiental. Se emplearon las herramientas de la teoría de los conjuntos difusos, la teoría de la posibilidad y la teoría de la evidencia, dadas las circunstancias y contenidos de incertidumbre que se presentan en la modelación, que en la localidad se refieren a la ausencia de datos representativos y a la necesidad de articular sistemáticamente informaciones subjetivas. El enfoque adoptado para la estimación de la susceptibilidad se refiere al tratamiento de las incertidumbres asociadas y consiste en su estimación y conservación a través del procesamiento de los datos. El modelo de susceptibilidad desarrollado procesa los datos de vulnerabilidad de las masas en la localidad y sus incertidumbres. Los datos finales del modelo se expresan mediante un mapa definido en categorías lingüísticas o etiquetas inciertas como: baja, media, alta, muy alta susceptibilidad, que se consideran adecuadas para la comunicación del riesgo.  Se desarrolló igualmente un espectro difuso con el cual se clasifican los niveles de susceptibilidad a partir de la percepción y opinión de expertos. El modelo muestra que en la zona de estudio se presentan niveles de susceptibilidad que comprenden grados de bajos a altos, siendo más frecuentes las susceptibilidades medias. El artículo despliega los detalles del procesamiento sistemático de los datos. Se introduce el concepto de parámetro difuso, útil en la modelación de fenómenos con incertidumbre, complejos y no lineales. Se indica que la modelación de la susceptibilidad puede ser factible a través de estas teorías y herramientas de incertidumbre. Se señala en el papel, igualmente, la alta conveniencia de incorporar la incertidumbre en los procesos de modelación y de toma decisiones. Se concluye que si en una modelación se incorporan incertidumbres como las identificadas, la cuantificación de la susceptibilidad no es adecuada, en cuanto que no es consistente reducir la información de salida de un modelo dado, a cantidades numéricas exactas o reales, cuando la naturaleza de las variables es particularmente incierta. Lo anterior puede hacerse extensivo a la estimación del riesgo. El trabajo realizado puede considerarse como una investigación analítica-sintética.

References

Abo-Sinna, M. A., Amer, A.H., El Sabed, H. H., An interactive algorithm for decomposing the parametric space in fuzzy multiobjective dynamic programming problem., Applied Mathematics and Computation, en impression, 2005. DOI: https://doi.org/10.1016/j.amc.2005.04.107

Arango, J. D., Relaciones lluvias-deslizamientos y zonificación geotécnica en la comuna dos de la ciudad de Manizales., Monografía presentada a la Facultad Nacional de Minas de Universidad Nacional de Colombia, para optar por el grado de Especialista en Aprovechamiento de Recursos Hidráulicos, 2000.

Ayalew, L., Yamagishi, H., Ugawa, N., Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River., Niigata Prefecture, Japan, Landslides, Vol. 1, No. 1, 2004. DOI: https://doi.org/10.1007/s10346-003-0006-9

Baudrit, C., Guyonnet, D., Dubois, D., Postprocessing the Hybrid Method for Addressing Uncertainty in Risk Assessment, Journal of Environmental Engineering, Vol. 131, No. 12, 2005. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2005)131:12(1750)

Beguería, S., Validation and Evaluation of Predictive Models in Hazard Assessment and Risk Management., Natural Hazards, Vol. 37, No. 3, 2006. DOI: https://doi.org/10.1007/s11069-005-5182-6

Běhounek L., Cintula P., From fuzzy logic to fuzzy mathematics: A methodological manifesto., Fuzzy Sets and Systems, Vol. 157, No. 5, 2006. DOI: https://doi.org/10.1016/j.fss.2005.10.011

Benedikt, J., Reinberg S., Riedl, L., A GIS application to enhance cell-based information modeling., Information Sciences, Vol. 142, 2002. DOI: https://doi.org/10.1016/S0020-0255(02)00163-9

Benferhat, S., Dubois, D., Prade, H., Possibilistic Logic Handling of Preferences., Applied Intelligence, Vol. 14, 2001. DOI: https://doi.org/10.1023/A:1011298804831

Binaghi, E., Luzi, L., Madella, P., Rampini, A., Slope Instability Zonation: a Comparison Between Certainty Factor and Fuzzy Dempster-Shafer Approaches., Natural Hazards, Vol. 17, 1998. DOI: https://doi.org/10.1023/A:1008001724538

Cardona, O., Estimación holística del riesgo sísmico utilizando sistemas dinámicos complejos., tesis presentada a la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de la Universidad Politécnica de Cataluña, para optar el grado de Doctor, 2001.

Chi, K-H., Park, N-W, Chung, C-J., Fuzzy logic integration for Landslide Hazard Mapping using Spatial Data from Boeun., Korea, Proceedings of Symposium on Spatial Theory, Processing and Applications, Ottawa, International Society for Photogrammetry and Remote Sensing, 2002.

Chivatá, I., Contribuciones para el tratamiento de la incertidumbre en la estimación de la amenaza por fenómenos de remoción en masa., tesis presentada a la Universidad Nacional de Colombia, para optar al grado de Magíster en Medio Ambiente y Desarrollo, 2007.

Chow, V. T., Maidment, D. R. y Mays, L. W, Hidrología Aplicada., McGraw-Hill Interamericana. S.A., 1996.

Christian, J. T., Geotechnical Engineering Reliability: How Well Do We Know What We Are Doing?., Journal of Geo technical and Geoenvironmental Engineering, Vol. 130, No. 10, 2004. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(985)

COLPADE., Comité local para la prevención, atención y recuperación de desastres, Primer informe emergencia., Marzo 18 y 19 de 2003, Manizales, Col., Alcaldía de Manizales, 2003.

COLPADE., Comité local para la prevención, atención y recuperación de desastres, Primer informe emergencia, Octubre 28 y 29 de 2003, Manizales, Col., Alcaldía de Manizales, 2003a.

Dodagoudar, G. R., Venkatachalam, G., Reliability analysis of slopes using fuzzy sets theory., Computers and Geotechnics, Vol. 27, 2000. DOI: https://doi.org/10.1016/S0266-352X(00)00009-4

Dubois, D., Prade, H., Fuzzy sets and probability: misunderstandings, bridges and gaps., In: Proceedings of the 2nd IEEE International Conference on Fuzzy Systems (FUZZ-IEEE93), San Francisco, CA, 1993.

Dubois, D., Prade, H., Possibility Theory. An Approach to Computerized., Processing of Uncertainty, Plenum Press, New York, 1988.

Dubois, D., Forty years of fuzzy sets., Fuzzy Sets and Systems, Vol. 156, 2005. DOI: https://doi.org/10.1016/j.fss.2005.05.027

Dubois, D., Possibility theory and statistical reasoning., Computational Statistics & Data Analysis, Vol. 51, 2006. DOI: https://doi.org/10.1016/j.csda.2006.04.015

Ercanoglu, M., Gokceoglu, C., Landslide Susceptibility Zoning North of Yenice., (NW Turkey) by Multivariate Statistical Techniques, Natural Hazards, Vol. 32., 2004. DOI: https://doi.org/10.1023/B:NHAZ.0000026786.85589.4a

Facchinetti, G., Pacchiarotti, N., Evaluations of fuzzy quantities., Fuzzy Sets and Systems, Vol. 157, 2006. DOI: https://doi.org/10.1016/j.fss.2005.08.003

Goodman, L. A., On simultaneous confidence intervals for multinomial proportions., Technometrics, Vol. 7, No. 2, Disponible en http://links.jstor.org, 1965. DOI: https://doi.org/10.1080/00401706.1965.10490252

Gorsevski, P. V., Gessler, P. E., Jankowski, P., Integrating a fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide hazard., Journal of Geographic Systems, Vol. 5, 2003. DOI: https://doi.org/10.1007/s10109-003-0113-0

Islam, Z., Fractals and fuzzy sets for modelling the heterogenity and spatial complexity of urban landscapes using multiscale remote sensing data., Tesis presentada a Curtin University of Technology, para optar al título de Doctor of Philosophy, 2004.

Juang, C. H., Lee, D. H., Sheu, C., Mapping Slope Failure Potential Using Fuzzy Sets., Journal of Geotechnical Engineering, Vol. 118, No. 3, 1992. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1992)118:3(475)

Juang, C. H., Jhi, Y-Y., Lee, D.-H., Stability analysis of existing slopes considering uncertainty, Engineering Geology, Vol. 49, No. 2, 1998. DOI: https://doi.org/10.1016/S0013-7952(97)00078-1

Kandel, A., Martins, A., Pacheco, R., Discusión de On the Very Real Distinction Between Fuzzy and Statistical Methods, Technometrics, Vol. 37, No. 3, Disponible en http://links.jstor.org, 1995. DOI: https://doi.org/10.1080/00401706.1995.10484331

Kentel, E., Aral, M. M., 2D Monte Carlo versus 2D Fuzzy Monte Carlo health risk assessment., Stochastic Environmental Research on Risk Assessment, Vol. 19, 2005. DOI: https://doi.org/10.1007/s00477-004-0209-1

Kikuchi, S., Pursula, M., Treatment of Uncertainty in Study of Transportation: Fuzzy Set Theory and Evidence Theory., Journal of Transportation Engineering, Vol. 124, No. 1, 1998. DOI: https://doi.org/10.1061/(ASCE)0733-947X(1998)124:1(1)

Klir, G., Yuan, B., Fuzzy sets and Fuzzy Logic., Theory and applications, Prentice Hall PTR (ed), New Jersey, 1995.

Kovitz, J.L., Christakos, G., Assimilation of fuzzy data by the BME method., Stochastic Environmental Research, Vol. 18, 2004. DOI: https://doi.org/10.1007/s00477-003-0128-6

Kreinovich, V., Nguyen, H. T., Which fuzzy logic is the best: Pragmatic approach (and its theoretical analysis)., Fuzzy Sets and Systems, Vol. 157, No. 5, 2006. DOI: https://doi.org/10.1016/j.fss.2005.10.009

Laviolette, M., Seaman, J. W., Barrett, D., Woodall, W. H., A probabilistic and statistical view of fuzzy methods: Reply Technometrics, Vol. 37, No. 3, Disponible en http://links. jstor.org, 1995. DOI: https://doi.org/10.2307/1269912

Lee, S., Application and verification of fuzzy algebraic operators to landslide susceptibility mapping., Environmental Geology, 2006. DOI: https://doi.org/10.1007/s00254-006-0491-y

Leung, Y, Fuzzy sets approach to spatial analysis and planning, a nontechnical evaluation., Geografiska Annaler. Series B. Human Geography, Vol. 65, No. 2, Disponible en http://links.jstor.org, 1983. DOI: https://doi.org/10.2307/490935

Makropoulos, C. K., Butler, D., Spatial ordered weighted averaging: incorporating spatially variable attitude towards risk in spatial multi-criteria decision-making., Environmental Modelling & Software, Vol. 21, 2006. DOI: https://doi.org/10.1016/j.envsoft.2004.10.010

Mares, M., How to handle fuzzy quantities?., Kybernetika, Vol. 13, No. 1, 1977.

Martin-Clouaire, R., Cazemier, D., Lagacherie, P., Representing and processing uncertain soil information for mapping soil hydrological properties., Computers and Electronics in Agriculture, Vol. 29, 2000. DOI: https://doi.org/10.1016/S0168-1699(00)00135-6

Masson, M. H., Denoeux, T., Inferring a possibility distribution from empirical data., Fuzzy sets and systems, Vol.157, 2006. DOI: https://doi.org/10.1016/j.fss.2005.07.007

Millán, J., Evaluación sistemática de procesos y efectos de fenómenos de remoción en masa en Santafé de Bogotá. - Propuesta metodológica., Memorias del VIII Congreso Colombiano de Geotecnia, Bogotá D.C., Sociedad Colombiana de Geotecnia,1999.

Morgenstern, N., Managing risk in geotechnical engineering., Memorias del 10mo Congreso Panamericano de Mecánica de Suelos e Ingeniería de Fundaciones, Vol. 4, México, Sociedad Mejicana de Mecánica de Suelos, 1995.

Novák, V., Are fuzzy sets a reasonable tool for modeling vague phenomena? Fuzzy Sets and Systems, Vol. 156, 2005. DOI: https://doi.org/10.1016/j.fss.2005.05.029

Novák, V., Which logic is the real fuzzy logic?, Fuzzy Sets and Systems, Vol. 157, No. 5, 2006. DOI: https://doi.org/10.1016/j.fss.2005.10.010

Pistocchi, A., Luzi, L., Napolitano, P., The use of predictive modeling techniques for optimal exploitation of spatial databases: a case study in landslide hazard mapping with expert system-like methods., Environmental Geology, Vol. 41, 2002. DOI: https://doi.org/10.1007/s002540100440

Portilla, M. E., Aplicación de los Sistemas de Lógica Difusa en el Análisis de la Susceptibilidad a Fenómenos de Remoción en Masa., Geología Colombiana, Vol. 26, 2000.

Portilla, M. E., Evaluación de la Amenaza por Deslizamiento en Málaga, Santander, Aplicando la Metodología de los Conjuntos Difusos: Un Tema de Geología Ambiental., Geología Colombiana, Vol. 24, 1999.

Remondo, J., González-Díez, A., Diaz, J. R., Cendrero, A., Landslide Susceptibility Models Utilising Spatial Data Analysis Techniques., A Case Study from the Lower Deba Valley, Guipúzcoa (Spain), Natural Hazards, Vol. 30, 2003. DOI: https://doi.org/10.1023/B:NHAZ.0000007202.12543.3a

Tangestani, M. H., Landslide susceptibility mapping using the fuzzy gamma operation in a GIS, Kakan catchment area., Iran Conference Proceedings Map India, Disponible en http://www.gisdevelopment.net/proceedings/mapindia/2003, 2003.

Van Westen, C. J, Van Asch, T. W. J., Soeters, R., Landslide hazard and risk zonation - why is it still so difficult?, Bulletin of Engineering Geology and the Environment, 2006. DOI: https://doi.org/10.1007/s10064-005-0023-0

Vanegas, L., A fuzzy approach to design evaluation, Scientia et technica, No. 12, 2000.

Yesilnacar, E., Topal, T., Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)., Engineering Geology, Vol. 79, 2005. DOI: https://doi.org/10.1016/j.enggeo.2005.02.002

Zadeh, L., Fuzzy Sets. Information and Control, Vol. 8, 1965. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Zadeh, L., Calculus of Fuzzy restrictions., in: L.A. Zadeh, KS. Fu, K. Tanaka and M. Shimura, eds., Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Academic Press, New York, 1975. DOI: https://doi.org/10.1016/B978-0-12-775260-0.50006-2

Zadeh, L., Fuzzy sets as a basis for a theory of possibility., Fuzzy Sets and Systems, Vol. 1, No. 1, 1978. DOI: https://doi.org/10.1016/0165-0114(78)90029-5

How to Cite

APA

Chivatá Cárdenas, I. (2008). Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories. Ingeniería e Investigación, 28(1), 26–40. https://doi.org/10.15446/ing.investig.v28n1.14865

ACM

[1]
Chivatá Cárdenas, I. 2008. Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories. Ingeniería e Investigación. 28, 1 (Jan. 2008), 26–40. DOI:https://doi.org/10.15446/ing.investig.v28n1.14865.

ACS

(1)
Chivatá Cárdenas, I. Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories. Ing. Inv. 2008, 28, 26-40.

ABNT

CHIVATÁ CÁRDENAS, I. Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories. Ingeniería e Investigación, [S. l.], v. 28, n. 1, p. 26–40, 2008. DOI: 10.15446/ing.investig.v28n1.14865. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14865. Acesso em: 24 jan. 2025.

Chicago

Chivatá Cárdenas, Ibsen. 2008. “Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories”. Ingeniería E Investigación 28 (1):26-40. https://doi.org/10.15446/ing.investig.v28n1.14865.

Harvard

Chivatá Cárdenas, I. (2008) “Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories”, Ingeniería e Investigación, 28(1), pp. 26–40. doi: 10.15446/ing.investig.v28n1.14865.

IEEE

[1]
I. Chivatá Cárdenas, “Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories”, Ing. Inv., vol. 28, no. 1, pp. 26–40, Jan. 2008.

MLA

Chivatá Cárdenas, I. “Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories”. Ingeniería e Investigación, vol. 28, no. 1, Jan. 2008, pp. 26-40, doi:10.15446/ing.investig.v28n1.14865.

Turabian

Chivatá Cárdenas, Ibsen. “Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories”. Ingeniería e Investigación 28, no. 1 (January 1, 2008): 26–40. Accessed January 24, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/14865.

Vancouver

1.
Chivatá Cárdenas I. Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories. Ing. Inv. [Internet]. 2008 Jan. 1 [cited 2025 Jan. 24];28(1):26-40. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14865

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

564

Downloads

Download data is not yet available.