Published

2008-05-01

X-ray computed tomography and aggregate image system (AIMS) for studying hot mix asphalt and aggregates

Tomografía computarizada con rayos-x y sistema de imágenes de agregados (AIMS) para el estudio de mezclas asfálticas y agregados

DOI:

https://doi.org/10.15446/ing.investig.v28n2.14903

Keywords:

materials characterisation, X-ray computed tomography, aggregate imaging system, asphalt mixture, aggre-gate, pavement (en)
caracterización de materiales, tomografía computarizada con rayos X, sistema de imágenes de agregados, mezcla asfáltica, agregados, pavimentos (es)

Authors

  • Allex E. Álvarez Lugo Universidad del Magdalena
  • Edith Arámbula Mercado Instituto Tecnológico y de Estudios Superiores de Monterrey
  • Silvia Caro Spinel Texas A&M University

Achieving reliable pavement design, durable roadway structures and effective maintenance and rehabilitation plans requires the suitable characterisation of the materials used in pavement construction. This paper describes two nondestructive techniques based on image acquisition and analysis and their successful application in pavement engineering: X-ray computed tomography (X-ray CT) and aggregate imaging system (AIMS). The former has been used for characterising the internal structure of asphalt mixes to analyse and model their performance; it has been particularly used for studying the content, size, distribution and connectivity of air-voids and these variables’ relationship with moisture damage susceptibility, capillarity and permeability within the mixes. AIMS was intended for characterising aggregates’ morphological properties (i.e., form, angularity and texture). This technique provides important advantages regarding the standard methods used for obtaining the same aggregate properties: it is objective, reliable, reproducible and can be carried out quickly. This paper was aimed at describing these two techniques’ theoretical backgrounds, mention some recent applications and provide insight into how existing characterisation of materials used in pavement construction can be improved.

La caracterización de las propiedades de los materiales empleados en ingeniería de pavimentos es fundamental para garantizar diseños confiables, estructuras durables y planes de mantenimiento y rehabilitación efectivos. Este artículo describe dos técnicas no destructivas basadas en la toma y procesamiento de imágenes que han sido exitosamente empleadas para caracterizar materiales de pavimentos: 1) tomografía computarizada con rayos-X, y 2) Sistema de Imágenes de Agregados. La primera técnica permite caracterizar la estructura interna de mezclas asfálticas con el fin de analizar y modelar su desempeño. En particular, esta técnica ha permitido estudiar el contenido, tamaño, distribución y conectividad de los vacíos y la relación de estas variables con la susceptibilidad al deterioro por la presencia de humedad, la capilaridad y la permeabilidad de las mezclas. El Sistema de Imágenes de Agregados fue desarrollado para caracterizar las propiedades morfológicas de los agregados (i.e., forma, angularidad y textura), técnica que proporciona importantes ventajas con respecto a los ensayos estándar ya que las mediciones son objetivas, de rápida ejecución, repetibles y reproducibles. El objetivo de este documento es describir los aspectos teóricos básicos y algunas aplicaciones recientes de estas técnicas que representan nuevas herramientas para mejorar los procesos de caracterización de los materiales empleados en ingeniería de pavimentos.

References

Al-Omari, A., Masad, E., Three Dimensional Simulation of Fluid Flow in X-ray CT Images of Porous Media., International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 28, 2004, pp. 1327– 1360. DOI: https://doi.org/10.1002/nag.389

Al Rousan, T., Characterization of Aggregate Shape Properties Using a Computer Automated System., Disertación Doctoral presentada a Texas A&M University, College Station, Texas, para optar al grado de Doctor of Philosophy, 2004.

Alvarez, A.E., Epps Martin, A., Estakhri, C., Button, J., Kraus, Z., Prapaitrakul, N., Glover, C.J., Evaluation and Recommended Improvements for Mix Design of Permeable Friction Courses., Report FHWA/TX-08/0-5262-3, College Station, Texas, Texas Transportation Institute, Texas A&M University, 2008, pp. 36-39.

Arámbula, E., Masad, E., Epps Martin, A., Moisture Susceptibility of Asphalt Mixtures with Known Field Performance Evaluated with Dynamic Analysis and Crack Growth Model., Transportation Research Record, Vol. 2001, 2007a, pp. 20–28. DOI: https://doi.org/10.3141/2001-03

Arámbula, E., Masad, E., Epps Martin, A., Influence of Air Void Distribution on the Moisture Susceptibility of Asphalt Mixes., Journal of Materials in Civil Engineering, ASCE, Vol. 19, 2007b, pp. 655-664. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:8(655)

Barrie, P.J., Characterization of Porous Media Using NMR Methods., Annual Reports on NMR Spectroscopy, Vol. 41, 2000, pp. 265-316. DOI: https://doi.org/10.1016/S0066-4103(00)41011-2

Caro, S., Masad, E., Bhasin, A. D., Little, D. N., Moisture Damage Susceptibility, Part I: Mechanisms., International Journal of Pavements Engineering, Vol.9, 2, 2008a, pp. 81-98. DOI: https://doi.org/10.1080/10298430701792128

Caro, S., Masad, E., Bhasin, A. D., Little, D. N., Moisture Damage Susceptibility, Part II: Characterization and Modeling., International Journal of Pavements Engineering, Vol.9, 2, 2008a, pp. 99-114. DOI: https://doi.org/10.1080/10298430701792144

Chen, J., Lin, K., Young, S., Effects of Crack Width and Permeability on Moisture-Induced Damage of Pavements., Journal in Materials in Civil Engineering, ASCE, Vol. 16, No. 3, 2004, pp. 276-282. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(276)

Gatchalian, D., Masad, E., Chowdhury, A., Little, D., Characterization of Aggregate Resistance to Degradation in Stone Matrix Asphalt Mixtures., Transportation Research Record, Vol. 1962, 2006, pp. 55-63. DOI: https://doi.org/10.1177/0361198106196200107

Hanna, A., Aggregate Tests for Portland Cement Concrete Pavements: Review and Recommendations., National Cooperative Highway Research Program. Research Results Digest, Number 281, 2003.

Instituto del Asfalto., Superpave., Superpave Mix Design, Superpave Series No. 2 (SP-2), Lexington, KY, Asphalt Institute, 2001, pp. 35-61.

Kandhal, P., Parker, F., Aggregate Tests Related to Asphalt Concrete Performance in Pavements., NCHRP Program, Report 405, 1998.

Ketcham, R.A., Carlson, W.D., Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences., Computers & Geosciences, Vol. 27, 2001, pp. 381-400. DOI: https://doi.org/10.1016/S0098-3004(00)00116-3

Kosek, J., Stepanek, F., Marek, M., Modeling of Transport and Transformation Processes in Porous and Multiphase Bodies., Advances in Chemical Engineering, Vol. 30, 2005, pp. 137 203. DOI: https://doi.org/10.1016/S0065-2377(05)30003-2

Kutay, M.E., Aydilek, A.H., Masad, E., Computational and Experimental Evaluation of Hydraulic Conductivity Anisotropy in Hot-Mix Asphalt., International Journal of Pavement Engineering, Vol. 8, No. 1, 2007, pp. 29-43. DOI: https://doi.org/10.1080/10298430600819147

Lekarp, F., Isacsson, U., Dawson, A., State of The Art I: Resilient Response of Unbound Aggregates., Journal of Transportation Engineering, Vol. 126, 2000a, pp 66-75. DOI: https://doi.org/10.1061/(ASCE)0733-947X(2000)126:1(66)

Lekarp, F., Isacsson, U., Dawson, A., State of The Art II: Permanent Strain Response of Unbound Aggregates., Journal of Transportation Engineering, Vol. 126, 2000b, pp.76 83. DOI: https://doi.org/10.1061/(ASCE)0733-947X(2000)126:1(76)

Luce, A., Mahmoud, E., Masad, E., Chowdhury, A., Relationship of Aggregate Microtexture to Asphalt Pavement Skid Resistance., Journal of Testing and Evaluation, Vol. 35, No. 6, 2007, pp. 1-11. DOI: https://doi.org/10.1520/JTE101080

Mahmoud, E., Development of Experimental Methods for the Evaluation of Aggregate Resistance to Polishing, Abrasion, and Breakage., tesis presentada a Texas A&M University, College Station, para optar al grado de Master of Science., 2005.

Masad, E., Olcott, D., White, T., Tashman, L., Correlation of fine aggregate imaging shape indices with asphalt mixture performance., Transportation Research Record, Vol. 1757, 2001, pp. 148–156. DOI: https://doi.org/10.3141/1757-17

Masad, E., Jandhyala, V.K., Dasgupta, N., Somadevan, N., Shashidhar, N., Characterization of Air Void Distribution in Asphalt Mixes Using X-ray Computed Tomography. Journal of Materials in Civil Engineering, ASCE, Vol. 14, No. 2, 2002, pp. 122-129. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2002)14:2(122)

Masad, E., Little, D., Tashman, L., Saadeh, S., Al-Rousan, T., Sukhwani, R., Evaluation of Aggregate Characteristics Affecting HMA Concrete Performance., Report No. ICAR 203-1, College Station, Texas, Texas Transportation Institute, The Texas A&M University System, Dec., 2003.

Masad, E., X-ray computed tomography of aggregates and asphalt mixes., Materials Evaluation, Vol. 62, No.7, 2004, pp. 775-783.

Masad, E., Birgisson, B., Al-Omari, A., Cooley, A., Analytical Derivation of Permeability and Numerical Simulation of Fluid Flow in Hot-Mix Asphalt., Journal of Materials in Civil Engineering, Vol. 16, No. 5, 2004, pp. 487-496. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2004)16:5(487)

Masad, E., Aggregate Imaging System (AIMS): Basics and Applications., Report FHWA/TX-05/5-1707-01-1, College Station, Texas, Texas Transportation Institute, Texas A&M University, 2005, pp. 2-5.

Masad, E., Al-Rousan, T., Button, J., Little, D., Tutumluer, E., Test Methods for Characterizing Aggregate Shape, Texture, and Angularity., NCHRP Project 4-30A, 2005.

Masad, E., Castelblanco, A., Birgisson, B., Effects of Air Void Size Distribution, Pore Pressure, and Bond Energy on Moisture Damage., Journal of Testing and Evaluation, Vol. 34, No. 1, 2006, pp. 1-9. DOI: https://doi.org/10.1520/JTE13112

Masad, E., Analysis of Aggregate Shape Characteristics and its Relationship to Hot Mix Asphalt Performance., Road Materials and Pavement Design, Vol. 8, 2007, pp. 317- 350. DOI: https://doi.org/10.3166/rmpd.8.317-350

Masad, E., Arambula, E., Ketcham, R.A., Abbas, A.R., y Epps Martin, A., Nondestructive Measurement of Moisture Transport in Asphalt Mixtures., Journal of the Association of Asphalt Paving Technologists, Vol. 76, 2007, pp. 919- 952.

Masad, E., Al-Omari, A., Chen H.-C., Computations of Permeability Tensor Coefficients and Anisotropy of Asphalt Concrete Based on Microstructure Simulation of Fluid Flow., Computational Material Science, No. 40, 2007, pp. 449-459. DOI: https://doi.org/10.1016/j.commatsci.2007.01.015

Otani, J., Obara, Y., X-ray CT for Geomaterials: Soils, Concrete, Rocks., Proceedings of the International Workshop on X-Ray CT for Geomaterials: GEOX2003, Kimamoto, Japan, Royal Swets and Zeitlinger: Lisse, 2004. DOI: https://doi.org/10.1201/9781439834299

Papagiannakis, A.T., Masad, E.A., Pavement Design and Materials., John Wiley and Sons, Inc., 2008.

Watson, D.E., Masad, E., Moore, K.A., Williams, K., Cooley, L.A. Jr., Verification of Voids in Coarse Aggregate Testing, Determining Stone-on-Stone Contact of Hot-Mix Asphalt Mixtures., Transportation Research Record, Vol. 1891, 2004, pp. 182–190. DOI: https://doi.org/10.3141/1891-21

White, T.D., Haddock, J.E., Rismantojo, E., Aggregate Tests for Hot-Mix Asphalt Mixtures Used in Pavements., NCHRP Program, Report 557, 2006.

How to Cite

APA

Álvarez Lugo, A. E., Arámbula Mercado, E. and Caro Spinel, S. (2008). X-ray computed tomography and aggregate image system (AIMS) for studying hot mix asphalt and aggregates. Ingeniería e Investigación, 28(2), 142–151. https://doi.org/10.15446/ing.investig.v28n2.14903

ACM

[1]
Álvarez Lugo, A.E., Arámbula Mercado, E. and Caro Spinel, S. 2008. X-ray computed tomography and aggregate image system (AIMS) for studying hot mix asphalt and aggregates. Ingeniería e Investigación. 28, 2 (May 2008), 142–151. DOI:https://doi.org/10.15446/ing.investig.v28n2.14903.

ACS

(1)
Álvarez Lugo, A. E.; Arámbula Mercado, E.; Caro Spinel, S. X-ray computed tomography and aggregate image system (AIMS) for studying hot mix asphalt and aggregates. Ing. Inv. 2008, 28, 142-151.

ABNT

ÁLVAREZ LUGO, A. E.; ARÁMBULA MERCADO, E.; CARO SPINEL, S. X-ray computed tomography and aggregate image system (AIMS) for studying hot mix asphalt and aggregates. Ingeniería e Investigación, [S. l.], v. 28, n. 2, p. 142–151, 2008. DOI: 10.15446/ing.investig.v28n2.14903. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14903. Acesso em: 2 feb. 2025.

Chicago

Álvarez Lugo, Allex E., Edith Arámbula Mercado, and Silvia Caro Spinel. 2008. “X-ray computed tomography and aggregate image system (AIMS) for studying hot mix asphalt and aggregates”. Ingeniería E Investigación 28 (2):142-51. https://doi.org/10.15446/ing.investig.v28n2.14903.

Harvard

Álvarez Lugo, A. E., Arámbula Mercado, E. and Caro Spinel, S. (2008) “X-ray computed tomography and aggregate image system (AIMS) for studying hot mix asphalt and aggregates”, Ingeniería e Investigación, 28(2), pp. 142–151. doi: 10.15446/ing.investig.v28n2.14903.

IEEE

[1]
A. E. Álvarez Lugo, E. Arámbula Mercado, and S. Caro Spinel, “X-ray computed tomography and aggregate image system (AIMS) for studying hot mix asphalt and aggregates”, Ing. Inv., vol. 28, no. 2, pp. 142–151, May 2008.

MLA

Álvarez Lugo, A. E., E. Arámbula Mercado, and S. Caro Spinel. “X-ray computed tomography and aggregate image system (AIMS) for studying hot mix asphalt and aggregates”. Ingeniería e Investigación, vol. 28, no. 2, May 2008, pp. 142-51, doi:10.15446/ing.investig.v28n2.14903.

Turabian

Álvarez Lugo, Allex E., Edith Arámbula Mercado, and Silvia Caro Spinel. “X-ray computed tomography and aggregate image system (AIMS) for studying hot mix asphalt and aggregates”. Ingeniería e Investigación 28, no. 2 (May 1, 2008): 142–151. Accessed February 2, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/14903.

Vancouver

1.
Álvarez Lugo AE, Arámbula Mercado E, Caro Spinel S. X-ray computed tomography and aggregate image system (AIMS) for studying hot mix asphalt and aggregates. Ing. Inv. [Internet]. 2008 May 1 [cited 2025 Feb. 2];28(2):142-51. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14903

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Fangyuan Gong, Yu Liu, Zhanping You, Xiaodong Zhou. (2021). Characterization and evaluation of morphological features for aggregate in asphalt mixture: A review. Construction and Building Materials, 273, p.121989. https://doi.org/10.1016/j.conbuildmat.2020.121989.

2. Ponan Feng, Hainian Wang, Heyang Ding, Jinkun Xiao, Marwa Hassan. (2020). Effects of surface texture and its mineral composition on interfacial behavior between asphalt binder and coarse aggregate. Construction and Building Materials, 262, p.120869. https://doi.org/10.1016/j.conbuildmat.2020.120869.

3. M.R.M. Aliha, Hassan Ziari, Ehsan Sobhani Fard, Majid Jebalbarezi Sarbijan. (2021). Heterogeneity effect on fracture parameters of a multilayer asphalt pavement structure containing a top‐down crack and subjected to moving traffic loading. Fatigue & Fracture of Engineering Materials & Structures, 44(5), p.1349. https://doi.org/10.1111/ffe.13434.

4. Mohammad Iqbal Khairandish, Avani Chopra, Sandeep Singh, Jasgurpreet Singh Chohan, Raman Kumar. (2022). Effect of Gradation and Morphological Characteristics of Aggregates on Mechanical Properties of Bituminous Concrete and Dense Bituminous Macadam. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(1), p.293. https://doi.org/10.1007/s40996-021-00609-8.

Dimensions

PlumX

Article abstract page views

446

Downloads

Download data is not yet available.

Most read articles by the same author(s)