Análisis del electroencefalograma con transformada de Fourier y modelos paramétricos
DOI:
https://doi.org/10.15446/ing.investig.n23.20673Keywords:
Análisis espectral, Electroencelografía, Contenido frecuencial, Transformada de Fourier (es)Spectral analysis, Electroencephalogram, Frequency content, Fourier Transform (en)
Downloads
El análisis tradicional del electroencefalograma (EEG) se realiza en el tiempo. Para ello se selecciona una sección del registro donde la contaminación es baja y posteriormente se cuenta el número de picos.
Con el propósito de mejorar el estudio del EEG reduciendo el factor subjetivo, se han aplicado dos técnicas para el análisis espectral. La primera se refiere a la Transformada de Fourier y el periodograma modificado; la segunda ajusta un modelo Autorregisivo (AR) al EEG y con base en este se obtiene un estimador de la densidad espectral. Adicionalmente, los parámetros del AR permiten monitorear la evolución del EEG.
References
L.G. Kiloh, A.J. McComas y J.W. Osselton; Clinical Electroencephalography. London, Butterworths, 1972.
A. Isaksson, A. Wennberg y L.H. Zetterberg; “Computer Analysis of EEG Signals with Parametric Models", Proc. IEEE, vol. 69, pp 451-461, April 1981. DOI: https://doi.org/10.1109/PROC.1981.11988
S.L. Marple; Digital Spectral Analysis with Applications. New Jersey, Prentice-Hall, 1987.
J.W. Cooley, P.A.W. Lewis y P.D. Welch; “The Fast Fourier Transform and its Applications”, IEEE Trans. on Ed., Vol. 2, pp. 27-34, March 1969. DOI: https://doi.org/10.1109/TE.1969.4320436
S.M. Pandit y S.M. Wu; “Time Series and System Analysis with Applications”, New York, John Wiley, 1983.
D. Brucq y P. Courtellemont; “Apprentissage sur le Signal EEG de Modélisations Autorégressives Modifiées”, L’Onde Electrique, Vol. 67, pp. 69-73, Juillet-Septembre 1987.
W.D. Smith y D.L. Larger; “Evaluation of Simple Algorithms for Spectral Analysis of the Electroencephalogram”, IEEE Trans. on BME, Vol. 33, pp. 352-358, March 1986. DOI: https://doi.org/10.1109/TBME.1986.325721
H.W. Steinberg, T. Gassey y L. Franke; “Fitting Autoregressive Models to EEG Time Series: An Empirical Comparison of Estimates of the Order”, IEEE Trans. on ASSP, Vol. 33, pp. 143-150, February 1985. DOI: https://doi.org/10.1109/TASSP.1985.1164537
S. Cerutti et al; “Classification of the EEG During Neurosurgery. Parametric Identification and Kalman Filtering Compared”, J. Biomed Eng., Vol. 8, pp. 244-254, July 1986. DOI: https://doi.org/10.1016/0141-5425(86)90091-9
R.A. Johnson y W.W. Dean; Applied Multivariate Statistical Analysis. New Jersey, Prentice-Hall, 1982.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Maria Camila Guerrero, Juan Sebastián Parada, Helbert Eduardo Espitia. (2021). EEG signal analysis using classification techniques: Logistic regression, artificial neural networks, support vector machines, and convolutional neural networks. Heliyon, 7(6), p.e07258. https://doi.org/10.1016/j.heliyon.2021.e07258.
2. Edith Elizabeth Ochoa-Martínez, Víctor Manuel López-Castruita, María Areli Osorio-Santiago, Ricardo García-Iturbide, Claudio Hiram Pech-Cervantes, Juan Pablo Guillermo Durán, Adacrid Colunga-Durán, Patricio Rodriguez-Acevedo. (2020). Alternative mounting of electrodes for electroencephalographic monitoring of the depth of anesthesia in neurological surgery. Interdisciplinary Neurosurgery, 20, p.100627. https://doi.org/10.1016/j.inat.2019.100627.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 1991 J. Alberto Delgado R.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.