Published

2017-09-01

Validation of honey-bee smelling profile by using a commercial electronic nose

Validación de la técnica de nariz electrónica para la determinación del perfil olfativo de miel de abejas

DOI:

https://doi.org/10.15446/ing.investig.v37n3.59656

Keywords:

Electronic nose, honey-bee, validation and volatile compounds (en)

Downloads

Authors

  • Ana R. Correa Young researcher, Group Quality assurance food and development of new products, Food Science and Technology Institute – ICTA, Universidad Nacional de Colombia.
  • Martha M. Cuenca Associated Professor at Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso
  • Carlos M. Zuluaga Researcher, Group Quality assurance food and development of new products, Food Science and Technology Institute – ICTA, Universidad Nacional de Colombia.
  • Matteo M. Scampicchio Associated Professor, Free University of Bozen, Bolzano, Italy.
  • Marta C. Quicazán Associated Professor at the Food Science and Technology Institute – ICTA, Universidad Nacional de Colombia. Colombia.

Honey is a natural sweetener and its quality labels are associated to its botanical or geographical origin, which is being established by palynological and sensorial analysis. The use of fast and non-invasive techniques such as an electronic nose can become an alternative for honey classification. In this study, the operational parameters of a commercial electronic nose were validated to determine the honey odor profile. A central composite design with five factors, three levels and 28 assays was used, varying sample amounts (1, 2 and 3 g), incubation temperature (30, 40 and 50 °C), incubation time 30 min), gas flow (50, 150 and 250 mL/min) and injection time (100, 200 and 300 s). The commercial nose had ten sensors. Repeatability was evaluated with a coefficient of variation of 10 %. The response surface methodology was used and the optimal operating conditions were: 3 g of sample, incubation at 50 °C for 17 min, gas flow of 100 mL/min and sampling time of 150 s. Finally, these parameters were used to analyze 19 samples of honey, which were classified according to their odor profiles, showing that it can be a useful tool to classify honey.

La miel es utilizada como edulcorante natural. El origen botánico o geográfico de las mieles se establece mediante análisis palinológico y sensorial. El uso de técnicas rápidas como la nariz electrónica puede ser una alternativa para la clasificación de mieles. En este estudio se validaron los parámetros operativos de una nariz electrónica comercial para determinar el perfil del olor de miel. Se utilizó un diseño compuesto central con cinco factores, tres niveles y 28 ensayos, variando la cantidad de muestra (1, 2 y 3 g), la temperatura de incubación (30, 40 y 50 °C), el tiempo de incubación (10, 20 y 30 min), el flujo de gas (50, 150 y 250 mL/ min) y el tiempo de inyección (100, 200 y 300 s). La nariz comercial contaba con diez sensores. La repetibilidad se evaluó con un coeficiente de variación de 10 %. Se utilizó la metodología de superficie de respuesta y se encontraron las siguientes condiciones: 3 g de muestra, incubación a 50 °C por 17 min, flujo de gas de 100 mL/min y tiempo de muestreo de 150 s. Finalmente, estos parámetros se utilizaron para analizar 19 muestras de miel, las cuales se clasificaron según sus perfiles de olor, demostrando así que puede ser una herramienta útil para clasificar mieles.
RII37VOL3_Art6_59656

Validation of honey-bee smelling profile
by using a commercial electronic nose


Validación de la técnica de nariz electrónica para la determinación
del perfil olfativo de miel de abejas


Ana R. Correa1, Martha M. Cuenca2, Carlos M. Zuluaga3,
Matteo M. Scampicchio4, and Marta C. Quicazán5


1Food Engineer. Universidad de la Amazonia, Colombia. Master Food Science and Technology (C), Universidad Nacional de Colombia, Colombia. Affiliation: Young researcher, Group Quality assurance food and development of new products, Food Science and Technology Institute – ICTA, Universidad Nacional de Colombia. E-mail: arcorream@unal.edu.co

2Chemical Engineer. Universidad Nacional de Colombia, Colombia. Master Chemical Engineering and Ph.D. Engineering – Chemical Engineering, Universidad Nacional de Colombia, Colombia. Affiliation: Associated Professor at Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso. E-mail: mmcuencaq@unal.edu.co

3Chemical Engineer. Universidad Nacional de Colombia, Colombia. Master Food Science and Technology and Ph.D. Engineering – Chemical Engineering, Universidad Nacional de Colombia, Colombia. Affiliation: Researcher, Group Quality assurance food and development of new products, Food Science and Technology Institute – ICTA, Universidad Nacional de Colombia. E-mail: cmzuluagad@unal.edu.co

4Food Science and Technology, University of Milan, Ph.D. – Food Biotechnology, University of Milan. Affiliation: Associated Professor, Free University of Bozen, Bolzano, Italy. E-mail: matteo.scampicchio@unibz.it

5Chemical Engineer. Universidad Nacional de Colombia, Colombia. Master Food Science and Technology, Universidad de la Habana. Ph.D. Engineering – Chemical Engineering, Universidad Nacional de Colombia, Colombia. Affiliation: Associated Professor at the Food Science and Technology Institute – ICTA, Universidad Nacional de Colombia. Colombia. E-mail: mcquicazand@unal.edu.co


How to cite: Correa, A., Cuenca, M., Zuluaga, C.M., Scampicchio, M., and Quicazán, M. (2017). Validation of honey-bee smelling profile by using a commercial electronic nose. Ingeniería e Investigación, 37(3), 45-51.

DOI: 10.15446/ing.investig.v37n3.59656


ABSTRACT

Honey is a natural sweetener and its quality labels are associated to its botanical or geographical origin, which is being established by palynological and sensorial analysis. The use of fast and non-invasive techniques such as an electronic nose can become an alternative for honey classification. In this study, the operational parameters of a commercial electronic nose were validated to determine the honey odor profile. A central composite design with five factors, three levels and 28 assays was used, varying sample amounts (1, 2 and 3 g), incubation temperature (30, 40 and 50 °C), incubation time 30 min), gas flow (50, 150 and 250 mL/min) and injection time (100, 200 and 300 s). The commercial nose had ten sensors. Repeatability was evaluated with a coefficient of variation of 10 %. The response surface methodology was used and the optimal operating conditions were: 3 g of sample, incubation at 50 °C for 17 min, gas flow of 100 mL/min and sampling time of 150 s. Finally, these parameters were used to analyze 19 samples of honey, which were classified according to their odor profiles, showing that it can be a useful tool to classify honey.


Keywords: Electronic nose, honey-bee, validation and smelling.


RESUMEN

La miel es utilizada como edulcorante natural. El origen botánico o geográfico de las mieles se establece mediante análisis palinológico y sensorial. El uso de técnicas rápidas como la nariz electrónica puede ser una alternativa para la clasificación de mieles. En este estudio se validaron los parámetros operativos de una nariz electrónica comercial para determinar el perfil del olor de miel. Se utilizó un diseño compuesto central con cinco factores, tres niveles y 28 ensayos, variando la cantidad de muestra (1, 2 y 3 g), la temperatura de incubación (30, 40 y 50 °C), el tiempo de incubación (10, 20 y 30 min), el flujo de gas (50, 150 y 250 mL/ min) y el tiempo de inyección (100, 200 y 300 s). La nariz comercial contaba con diez sensores. La repetibilidad se evaluó con un coeficiente de variación de 10 %. Se utilizó la metodología de superficie de respuesta y se encontraron las siguientes condiciones: 3 g de muestra, incubación a 50 °C por 17 min, flujo de gas de 100 mL/min y tiempo de muestreo de 150 s. Finalmente, estos parámetros se utilizaron para analizar 19 muestras de miel, las cuales se clasificaron según sus perfiles de olor, demostrando así que puede ser una herramienta útil para clasificar mieles.


Palabras clave: Miel, nariz electrónica, validación y perfil olfativo.


Received: August 18th 2016

Accepted: August 14th 2017


Introduction

Food volatile compounds analysis is very important and, normally, it is related to smell, which is one of the most important sensory parameters. Generally, volatile compounds analysis is performed by using gas-chromatographic methods, which are robust and powerful (Agila & Barringer, 2012; Castro-Vázquez, Díaz-Maroto, González-Viñas, & Pérez-Coello, 2009; Papotti, Bertelli, & Plessi, 2012), but it is necessary to preprocess sample which is time-consuming and it is difficult to determine it.

Electronic Noses (e-Noses) are an alternative, and generally they have an electrochemical sensors array that provides a fingerprint of a given sample headspace (Romano et al., 2016). Typically, an e-Nose, trained using samples of known origin, can be employed to recognize and predict sample identity on the basis of a specific fingerprint (Gliszczyńska-Świgło & Chmielewski, 2016). The e-Nose provides little information as to the actual composition of the sample headspace but they are generally easy to use, they provide a high analytical throughput and they are relatively inexpensive.

Honey is a traditional natural product produced by bees from the nectar of flowers (Gómez-Díaz, Navaza, & Quintáns-Riveiro, 2012). Its physicochemical, microbiological and sensory characteristics are associated with bee species, botanical and geographical nectar origin, harvesting practices, extraction and honey storage (Castro-Vázquez, Díaz-Maroto, de Torres, & Pérez-Coello, 2010).

Honey contains mainly sugar and water, but also a great variety of volatile compounds and there have been reported like 400 different compounds for a single type of honey (Piana et al., 2006; Romano et al., 2016). There are different methods for determining physical, chemical, microbiological quality, and botanical origin (Bogdanov et al., 2004; Castro-Vázquez et al., 2007; Cuevas-Glory et al., 2007; Kuś & van Ruth, 2015; Montenegro et al., 2008; Piana et al.; 2006), which can be related to honey sensory attributes such as color, texture, flavor and appearance. E-Noses applied to honey characterization and classification represent the application of a novel, rapid and non-invasive technique, becoming a useful tool for quality control, shelf-life and food adulteration (Ampuero, Bogdanov, & Bosset, 2004; Arvanitoyannis, Chalhoub, Gotsiou, Lydakis-Simantiris, & P., 2012; Benedetti, Mannino, Sabatini, & Marcazzan, 2004; Čačić, Primorac, Kenjerić, Benedetti, & Mandić, 2009; Gliszczyńska-Świgło & Chmielewski, 2016; Quicazán, Zuluaga, & Díaz, 2014; Romano et al., 2016; Subari, Saleh, Shakaff, & Zakaria, 2012; Zuluaga et al., 2015).

In order to determining a smelling profile with an electronic nose, its operating conditions have to be considered: sample temperature (depending on amount and volatility of compounds presents), sampling time, gas flow, incubation time, and cleaning time of the sensors (Quicazán et al., 2014). This study aimed to validate the operating conditions for a commercial electronic nose PEN 3 (Airsense, Germany) to obtain smelling profiles for honey-bee samples, demonstrating that it can be a portable and low-cost technique even if it does not provide quantitative information about sample headspace composition.


Methodology


Honey samples

For validation, it was used an Acacia honey (Robinia pseudoancia) from the local market of Bolzano (Italy). For performing the final test with different types of honey, there were used 19 different honeys from different places, presented in Table 3.


Determination of volatile compounds profile for electronic nose

It was used a portable commercial electronic nose Airsense PEN 3 (Airsense, Germany), with an array of 10 semiconductor sensors (Table 1). Honey samples were served and weighed into glass vials of 10 mL. The vials were hermetically sealed with lids containing septa silicone. Operating parameters were changed manually for each test. The obtained responses were recorded by the sensors through Win Muster software (Airsense, Germany), and quantitatively expressed as a conductance value. It was obtained a data matrix of “m” columns “n” rows, where “m” columns represent the number of sensors of the electronic nose and “n” the number of times the analysis was performed. From the matrix for each sensor, it was obtained the medium coefficient differential value nuance response curve of each sensor corresponding to the value of the differential coefficient (mcdv) calculated by using Equation (1)(Yin & Tian, 2007).

(1)


Where mdcv is the result of the characteristic value for each sensor profile of each sample, N is the number of time intervals analyzed, Xi and Xi+1 result of conductance in times i and i+1, respectively; Δt is the time interval between conductance data, which by default is 1s. The values obtained reflect the average speed of sensors responses and represent their principal characteristics (Quicazán et al., 2014).


Table 1. Symbols and groups of compounds detected by each E-nose sensor

Sensor

Symbol

General description

1

W1C

Aromatic compounds

2

W5S

Nitrous oxide and ozone

3

W3C

Aromatic compounds

4

W6S

H2, O2 y CO2

5

W5C

Alkanes

6

W1S

Methane

7

W1W

Therpens and organosulfur compounds

8

W2S

Alcohols

9

W2W

Organosulfur compounds

10

W3S

Methane and aliphatic compounds

Source: Authors


Operating parameters evaluation

A central composite design with five factors with three levels (Table 3) and 28 trials were used. Responses were conductance values for each sensor (10) of the E-nose. Response surface methodology was used and optimal operating conditions were found by a responses optimization design.


Table 2. Factors and levels of the central composite design

Factors Levels

Amount
of sample
(g)

Incubation
temperature
(ºC)

Incubation
time
(min)

Gas flow
(mL/min)

Injection
time
(s)

-1

1

30

10

50

100

0

2

40

20

150

200

+1

3

50

30

250

300

Source: Authors


Repeatability evaluation

Smelling profile of 10 samples of acacia honey (Robinia pseudoancia L.) from the same batch were determined by using optimal operating conditions. It was used 10% maximal variation coefficient (VC) criteria to evaluate repeatability, which measures a dispersion that correlates the average (X) and the standard deviation (s) according to Equation (2):

(2)


Honey classification with optimized parameters

Smelling profile of 19 different honey samples were performed by using optimized e-nose parameters. 10 replicates were performed. With average mcdv values, a Principal Components Analysis was performed.



Results and discussion


Smelling profiles

The mcdv for all sensors in each of 28 trials (Table 4) were calculated from the data matrix obtained by using Equation (1). All sensors recorded conductance values different for each of the tests performed, demonstrating all conditions reflect different responses.


Table 3. Different honey samples used for classification

Sample Number

Common Name

Botanical Origin

Geographical origin

Bee Species

Production year

1

Chestnut

Castanea sativa

Como - Italy

Apis mellifera

2014

2

Acacia

Robinia pseudoancia

South Tyrol - Italy

Apis mellifera

2015

3

Honey Mexture Ambrosolio

Imported honey mixture

Hungary, Italy, Ukraine

Apis mellifera

-

4

Rododendron

Rhododendron ferrugineum

Sondrio - Italy

Apis mellifera

2015

5

Saxifraga

Saxifraga corsica

Como - Italy

Apis mellifera

2015

6

Berseem

Trifolium alexandrinum

Como - Italy

Apis mellifera

2015

7

Eucalyptus

Eucalptus globulus Labill

Sardinia - Italy

Apis mellifera

2015

8

Zulla

Hedusarum Coronarium

Chieti - Italy

Apis mellifera

2015

9

Thyme

Thymus vulgaris

Sicily - Italy

Apis mellifera

2014

10

Apenine Honeydew

Forest Honeydew

Bolognese appennine

Apis mellifera

2014

11

Hill Honeydew

Forest Honeydew

Bolognese appennine

Apis mellifera

2014

12

Orange blossom

Citrus aurantiifolia

Coquena - Italy

Apis mellifera

2015

13

Heather

Erica arborea

Corse - Italy

Apis mellifera

2015

14

Sunflower

Helianthus annuus

Ancona - Italy

Apis mellifera

2015

15

Lime

Tilia europaea

Como - Italy

Apis mellifera

2015

16

Mixed flower Italian

Mixed flower Italian

Como - Italy

Apis mellifera

2015

17

Ailanthus

Ailanthus altissima

Chieti - Italy

Apis mellifera

2015

18

Mixed flower Colombian

Mixed flower Colombian

Sierra Nevada de Santa Marta - Colombia

Apis mellifera

2015

19

Colombian Tetragonisca angustula

Mixed flower Colombian

Medellín - Colombia

Tetragonisca angustula

2015

Source: Authors


Table 4. MCDV for each sensor response at each trial

Trial
numbers

Semiconductor sensors

W1C

W5S

W3C

W6S

W5C

W1S

W1W

W2S

W2W

W3S

1

1,0290

1,2794

1,0529

0,9253

1,0590

0,9234

1,7277

0,9738

1,5317

1,0060

2

1,0329

1,4880

1,0530

0,8484

1,0585

0,8751

2,0414

0,9453

1,6778

1,0043

3

1,0089

1,2742

1,0229

0,9879

1,0217

1,0315

1,7468

1,0071

1,4792

0,9997

4

0,9906

1,4973

1,0159

0,9853

1,0196

1,1936

1,9991

1,0685

1,6072

1,0017

5

1,0433

1,2801

1,0579

0,9259

1,0604

0,8412

1,7638

0,9393

1,5311

1,0043

6

1,0232

1,4574

1,0368

0,8565

1,0394

0,8898

2,0066

0,9478

1,6080

1,0061

7

1,0028

1,3112

1,0190

0,9912

1,0198

1,0904

1,7980

1,0265

1,4894

1,0004

8

1,0047

1,4410

1,0233

0,9726

1,0240

1,0891

2,1203

1,0474

1,6663

0,9988

9

1,0150

1,7866

1,0447

0,9494

1,0550

1,0484

2,6877

1,0505

2,0278

1,0652

10

1,0187

2,1960

1,0475

0,8714

1,0575

0,9804

3,0588

1,0281

2,1803

1,0633

11

0,8209

2,9271

0,9420

1,0086

1,0084

2,5684

2,8930

1,6541

2,3492

1,0413

12

0,8259

2,9712

0,9533

1,0058

1,0142

2,5060

2,9714

1,6421

2,2753

1,0411

13

0,8654

2,7288

0,9921

0,9287

1,0460

2,0361

3,7534

1,5244

2,7741

1,0158

14

0,8635

2,9143

1,0002

0,8614

1,0516

2,1111

3,9044

1,5293

2,7607

1,0112

15

0,9027

2,3699

0,9840

0,9925

1,0127

1,9573

3,3322

1,3849

2,4085

1,0096

16

0,9098

2,4230

0,9914

0,9878

1,0168

1,8885

3,5582

1,3849

2,4670

1,0057

17

0,9636

1,8021

1,0282

0,9940

1,0421

1,4451

2,4685

1,1831

1,8951

0,9945

18

0,9367

2,4101

1,0181

0,9653

1,0394

1,7029

3,2711

1,2940

2,3300

1,0101

19

0,8719

2,6609

0,9890

0,9683

1,0330

2,1231

3,2022

1,5039

2,3480

1,0048

20

0,9316

2,1596

1,0149

0,9691

1,0382

1,5497

2,8664

1,2365

2,1230

1,0092

21

0,8239

3,0150

0,9707

0,8932

1,0400

2,1871

4,5651

1,6934

3,2981

1,0175

22

0,8142

2,8177

0,9318

0,9725

0,9853

2,4987

3,7252

1,6803

2,6415

0,9959

23

0,8391

2,8049

0,9678

0,9842

1,0292

2,5308

3,8153

1,7181

2,8268

1,0096

24

0,9521

2,0683

1,0254

0,9187

1,0432

1,4197

2,8284

1,1901

2,0654

1,0124

25

0,9691

1,7907

1,0278

0,9801

1,0406

1,4851

2,5044

1,2227

1,9271

1,0096

26

0,8452

2,8959

0,9773

0,9824

1,0327

2,5715

3,7819

1,7128

2,7503

1,0145

27

0,8467

2,8304

0,9763

0,9643

1,0306

2,4656

3,8415

1,6835

2,8070

1,0096

28

0,8851

2,4618

0,9958

0,9683

1,0351

2,1887

3,4161

1,5358

2,5174

1,0051

Source: Authors


Operating parameters evaluation

The highest statistically significant changes in relation to each factor and interactions between factors were evaluated. With a responses optimization design, it was found that the best operating conditions were 3 g sample, incubation temperature 50 °C, incubation time 1020 s, gas flow of 100 mL/min and 150 s sampling time, result that confirm the importance not only of the sample but also of operating conditions.

Table 5 presents the statistical results of p-value from the response surface for each of factor and interactions among factors. Values p < 0,05, indicate the factor or interaction between two factors has a greater influence on the response of each sensor. Therefore, it was found that incubation, temperature, gas flow, injection time, interaction between incubation time and injection time, interaction between amount of sample and injection time have greater influence on the responses. Sensors that react to the presence of methane and aliphatic compounds (W3S), alkanes (W5C) and aromatic compounds (W3C) show the greatest statistically significant changes for each factor and their interactions, which is correlated to the results reported by Cuevas-Glory et al. (2007), informing the presence of benzaldehyde, linalool, nonanal and hotrienol.


Table 5. p values for Surface Response Analysis

Factors
and interactions

Semiconductor sensors

W1C

W5S

W3C

W6S

W5C

W1S

W1W

W2S

W2W

W3S

Incubation temperature (ºC)

0,000

0,000

0,000

0,009

0,004

0,000

0,000

0,000

0,000

0,000

Incubation time (min)

0,693

0,703

0,958

0,152

0,042

0,986

0,005

0,869

0,061

0,000

Injection time (s)

0,001

0,946

0,000

0,000

0,000

0,001

0,010

0,020

0,011

0,000

Amount of sample (g)

0,363

0,704

0,460

0,000

0,089

0,327

0,250

0,240

0,557

0,039

Gas flow (mL/min)

0,063

0,026

0,018

0,754

0,003

0,136

0,049

0,123

0,066

0,071

Incubation temperature (ºC)
– Incubation time (min)

0,076

0,265

0,667

0,082

0,376

0,146

0,001

0,111

0,005

0,000

Incubation temperature (ºC)
– Injection time (s)

0,048

0,206

0,021

0,358

0,108

0,040

0,266

0,170

0,746

0,000

Incubation temperature (ºC)
– Amount of sample (g)

0,766

0,769

0,364

0,848

0,027

0,991

0,906

0,989

0,576

0,251

Incubation temperature (ºC)
– gas flow (mL/min)

0,477

0,777

0,472

0,564

0,110

0,483

0,584

0,697

0,571

0,359

Incubation time (min)
– Injection time (s)

0,000

0,008

0,000

0,382

0,010

0,001

0,752

0,003

0,557

0,000

Incubation time (min)
– Amount of sample (g)

0,852

0,521

0,740

0,702

0,170

0,852

0,987

0,872

0,987

0,261

Incubation time (min)
– gas flow (mL/min)

0,873

0,409

0,726

0,440

0,068

0,765

0,763

0,785

0,682

0,460

Injection time (s) –
Amount of sample (g)

0,871

0,501

0,729

0,000

0,041

0,826

0,920

0,604

0,808

0,317

Injection time (s)
– gas flow (mL/min)

0,597

0,369

0,343

0,080

0,043

0,895

0,631

0,822

0,680

0,634

Amount of sample (g)
– gas flow (mL/min)

0,000

0,001

0,000

0,162

0,592

0,000

0,557

0,001

0,124

0,000

Source: Authors

P values <0,05 indicate that the factor or interaction between these factors led significant changes in conductance responses obtained by that sensor


Repeatability

mcdv was determined for each of 10 measurements of smelling profile by using Equation (1). From the data matrix, statistical parameters like average, range, standard deviation and coefficient of variation were determined by using Equation (2), as it is shown on Table 6. Variation coefficients of the responses were within the maximal limit (10%). Operating conditions allow obtaining repeatable honey smelling profiles, demonstrating that validation of a smelling profile depends on the sample but also on sampling conditions.


Honey classification

In Figure 1 is presented the biplot corresponding to a PCA analysis which explains the 80,72% of total variance for 19 honey samples. It is noticeable all samples showed a different smelling profile, especially samples 1, 2, 7 and 12, due to its botanical and geographical origin. Samples 3, 16 and 19 are mixed floral honey and present similar smelling characteristics. Even small smelling characteristics make a difference among honey samples, which is observed by performing their e-nose analysis.


Table 6. Statistical parameters for repeatability evaluation

Statistical parameters

W1C

W5S

W3C

W6S

W5C

W1S

W1W

W2S

W2W

W3S

Minimal value

0,9336

2,2430

1,0229

0,9545

1,0497

1,2362

2,6985

1,0109

2,2498

0,9928

Maximal value

1,0354

2,7667

1,0544

0,9625

1,0580

1,3581

3,1866

1,2609

2,4160

1,0010

Average

0,9839

2,5057

1,0404

0,9581

1,0547

1,2888

2,8655

1,1181

S,3131

0,9970

Standard deviation

0,0379

0,1851

0,0113

0,0032

0,0027

0,0627

0,2032

0,0995

0,0655

0,0026

Coefficients of variation (%)

3,85

7,39

1,09

0,33

0,26

4,86

7,09

8,90

2,83

0,26

Source: Authors

Figure 1. PCA for different kinds of honey using optimized parameters.

Source: Authors


Conclusions

It is concluded that optimized operating conditions found for acacia honey smelling profile were standardized: 3 g sample, incubation temperature 50°C, 1020 s incubation time, gas flow of 100 mL/min and 150 s sampling time, giving repeatable responses for all sensors. Optimized parameters smelling evaluation for 19 different honey samples shows all e-nose sensors give information related to its smelling profile, which is different for all samples, confirming that a validated methodology allows to use this technique as a quick and easy alternative for honey differentiation and classification according to its botanical and geographical origin.


Acknowledgements

The authors express their gratitude to the Administrative Department of Science, Technology and Innovation-COLCIENCIAS for the scholarship-internship Young Researchers, Italo-Latin American Institute-IILA for the Agrifood sector scholarship and the Province of Bolzano, Italy.


References

Agila, A., & Barringer, S. (2012). Application of selected ion flow tube mass spectrometry coupled with chemometrics to study the effect of location and botanical origin on volatile profile of unifloral American honeys. Journal of Food Science, 77(10), C1103-8. http://doi.org/10.1111/j.1750-3841.2012.02916.x

Ampuero, S., Bogdanov, S., & Bosset, J.-O. (2004). Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, 218(2), 198–207. http://doi.org/10.1007/s00217-003-0834-9

Arvanitoyannis, I., Chalhoub, C., Gotsiou, P., Lydakis-Simantiris, N., & P., K. (2012). Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Critical Reviews in Food Science and Nutrition, 45(3), 193–203.

Benedetti, S., Mannino, S., Sabatini, A. G., & Marcazzan, G. L. (2004). Electronic nose and neural network use for the classification of honey. Apidologie, 35, 1–6. http://doi.org/10.1051/apido

Bogdanov, S., Ruoff, K., & Oddo, L. P. (2004). Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie, 35, 4–17. http://doi.org/10.1051/apido

Čačić, F., Primorac, L., Kenjerić, D., Benedetti, S., & Mandić, M. L. (2009). Application of electronic nose in honey geographical origin characterisation. Journal Central European Agriculture 10, 1(1), 19–26. http://doi.org/https://doi.org/10.5513/jcea.v10i1.745

Castro-Vázquez, L., Díaz-Maroto, M. C., de Torres, C., & Pérez-Coello, M. S. (2010). Effect of geographical origin on the chemical and sensory characteristics of chestnut honeys. Food Research International, 43(10), 2335–2340. http://doi.org/10.1016/j.foodres.2010.07.007

Castro-Vázquez, L., Díaz-Maroto, M. C., González-Viñas, M. A., & Pérez-Coello, M. S. (2009). Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chemistry, 112(4), 1022–1030. http://doi.org/10.1016/j.foodchem.2008.06.036

Castro-Vázquez, L., Díaz-Maroto, M. C., & Pérez-Coello, M. S. (2007). Aroma composition and new chemical markers of Spanish citrus honeys. Food Chemistry, 103(2), 601–606. http://doi.org/10.1016/j.foodchem.2006.08.031

Cuevas-Glory, L. F., Pino, J. a., Santiago, L. S., & Sauri-Duch, E. (2007). A review of volatile analytical methods for determining the botanical origin of honey. Food Chemistry, 103(3), 1032–1043. http://doi.org/10.1016/j.foodchem.2006.07.068

Gliszczyńska-Świgło, A., & Chmielewski, J. (2016). Electronic Nose as a Tool for Monitoring the Authenticity of Food. A Review. Food Analytical Methods, 1–17. http://doi.org/10.1007/s12161-016-0739-4

Gómez-Díaz, D., Navaza, J. M., & Quintáns-Riveiro, L. C. (2012). Physicochemical characterization of Galician Honeys. International Journal of Food Properties, 15(2), 292–300. http://doi.org/10.1080/10942912.2010.483616

Kuś, P. M., & van Ruth, S. (2015). Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics. LWT - Food Science and Technology, 62(1), 69–75. http://doi.org/https://doi.org/10.1016/j.lwt.2014.12.060

Montenegro, G., Gómez, M., Pizarro, R., Casaubon, G., & Peña, R. C. (2008). Implementación de un panel sensorial para mieles chilenas. Ciencia E Investigación Agraria, 35(1), 51–58. http://doi.org/10.4067/S0718-16202008000100005

Papotti, G., Bertelli, D., & Plessi, M. (2012). Use of HS-SPME-GC-MS for the classification of Italian lemon, orange and citrus spp. honeys. International Journal of Food Science and Technology, 47(11), 2352–2358. http://doi.org/10.1111/j.1365-2621.2012.03109.x

Piana, M., Persano, L., Bantabo, l A., Bruneau, E., Bogdanov, S., & Guyot, C. (2006). Sensory analysis applied to honey: state of the art. Apidologie, 35(1), 26–37. http://doi.org/10.1051/apido

Quicazán, M., Zuluaga, C., & Díaz, A. (2014). Nariz electrónica. Fundamentos, manejo de datos y aplicación en productos apícolas. (Universidad Nacional de Colombia, Ed.). Bogotá: Instituto de Ciencia y Tecnología de Alimentos.

Romano, A., Cuenca, M., Makhoul, S., Biasioli, F., Martinello, L., Fugatti, A., & Scampicchio, M. (2016). Comparison of e-Noses: The case study of honey. Italian Journal of Food Science, 28(2), 326–337. http://doi.org/HTTP://DX.DOI.ORG/10.14674/1120-1770%2FIJFS.V325

Subari, N., Saleh, J. M., Shakaff, A. Y. M., & Zakaria, A. (2012). A hybrid sensing approach for pure and adulterated honey classification. Sensors (Switzerland), 12(10), 14022–14040. http://doi.org/10.3390/s121014022

Yin, Y., & Tian, X. (2007). Classification of Chinese drinks by a gas sensors array and combination of the PCA with Wilks distribution. Sensors and Actuators, B: Chemical, 124(2), 393–397. http://doi.org/https://doi.org/10.1016/j.snb.2007.01.008

Zuluaga, C., Serrato, J., & Quicazán, M. (2015). Chemical, nutritional and bioactive characterization of Colombian bee-bread. Chemical Engineering Transactions, 43, 175–180. http://doi.org/DOI: 10.3303/CET1543030


 

Attribution 4.0 International (CC BY 4.0) Share - Adapt

References

Agila, A., & Barringer, S. (2012). Application of selected ion flow tube mass spectrometry coupled with chemometrics to study the effect of location and botanical origin on volatile profile of unifloral American honeys. Journal of Food Science, 77(10), C1103-8. http://doi.org/10.1111/j.1750-3841.2012.02916.x

Ampuero, S., Bogdanov, S., & Bosset, J.-O. (2004). Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, 218(2), 198– 207. http://doi.org/10.1007/s00217-003-0834-9

Arvanitoyannis, I., Chalhoub, C., Gotsiou, P., Lydakis-Simantiris, N., & P., K. (2012). Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Critical Reviews in Food Science and Nutrition, 45(3), 193–203.

Benedetti, S., Mannino, S., Sabatini, A. G., & Marcazzan, G. L. (2004). Electronic nose and neural network use for the classification of honey. Apidologie, 35, 1–6. http://doi.org/10.1051/apido

Bogdanov, S., Ruoff, K., & Oddo, L. P. (2004). Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie, 35, 4–17. http://doi.org/10.1051/apido

Čačić, F., Primorac, L., Kenjerić, D., Benedetti, S., & Mandić, M. L. (2009). Application of electronic nose in honey geographical origin characterisation. Journal Central European Agriculture 10, 1(1), 19–26. http://doi.org/http://dx.doi.org/10.5513/jcea.v10i1.745

Castro-Vázquez, L., Díaz-Maroto, M. C., de Torres, C., & Pérez- Coello, M. S. (2010). Effect of geographical origin on the chemical and sensory characteristics of chestnut honeys. Food Research International, 43(10), 2335–2340. http://doi.org/10.1016/j.foodres.2010.07.007

Castro-Vázquez, L., Díaz-Maroto, M. C., González-Viñas, M. A., & Pérez-Coello, M. S. (2009). Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chemistry, 112(4), 1022–1030. http://doi.org/10.1016/j.foodchem.2008.06.036

Castro-Vázquez, L., Díaz-Maroto, M. C., & Pérez-Coello, M. S. (2007). Aroma composition and new chemical markers of Spanish citrus honeys. Food Chemistry, 103(2), 601–606. http://doi.org/10.1016/j.foodchem.2006.08.031

Cuevas-Glory, L. F., Pino, J. a., Santiago, L. S., & Sauri-Duch, E. (2007). A review of volatile analytical methods for determining the botanical origin of honey. Food Chemistry, 103(3), 1032–1043. http://doi.org/10.1016/j.foodchem.2006.07.068

Gliszczyńska-Świgło, A., & Chmielewski, J. (2016). Electronic Nose as a Tool for Monitoring the Authenticity of Food. A Review. Food Analytical Methods, 1–17. http://doi. org/10.1007/s12161-016-0739-4

Gómez-Díaz, D., Navaza, J. M., & Quintáns-Riveiro, L. C. (2012). Physicochemical characterization of Galician Honeys. International Journal of Food Properties, 15(2), 292–300. http://doi.org/10.1080/10942912.2010.483616

Kuś, P. M., & van Ruth, S. (2015). Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics. LWT - Food Science and Technology, 62(1), 69–75. http://doi.org/http://dx.doi.org/10.1016/j.lwt.2014.12.060

Montenegro, G., Gómez, M., Pizarro, R., Casaubon, G., & Peña, R. C. (2008). Implementación de un panel sensorial para mieles chilenas. Ciencia E Investigación Agraria, 35(1), 51–58. http://doi.org/10.4067/S0718-16202008000100005

Papotti, G., Bertelli, D., & Plessi, M. (2012). Use of HS-SPMEGC-MS for the classification of Italian lemon, orange and citrus spp. honeys. International Journal of Food Science and Technology, 47(11), 2352–2358. http://doi.org/10.1111/j.1365-2621.2012.03109.x

Piana, M., Persano, L., Bantabo, l A., Bruneau, E., Bogdanov, S., & Guyot, C. (2006). Sensory analysis applied to honey: state of the art. Apidologie, 35(1), 26–37. http://doi.org/10.1051/apido

Quicazán, M., Zuluaga, C., & Díaz, A. (2014). Nariz electrónica. Fundamentos, manejo de datos y aplicación en productos apícolas. (Universidad Nacional de Colombia, Ed.). Bogotá: Instituto de Ciencia y Tecnología de Alimentos.

Romano, A., Cuenca, M., Makhoul, S., Biasioli, F., Martinello, L., Fugatti, A., & Scampicchio, M. (2016). Comparison of e-Noses: The case study of honey. Italian Journal of Food Science, 28(2), 326–337. http://doi.org/HTTP://DX.DOI.ORG/10.14674/1120-1770%2FIJFS.V325

Subari, N., Saleh, J. M., Shakaff, A. Y. M., & Zakaria, A. (2012). A hybrid sensing approach for pure and adulterated honey classification. Sensors (Switzerland), 12(10), 14022–14040. http://doi.org/10.3390/s121014022

Yin, Y., & Tian, X. (2007). Classification of Chinese drinks by a gas sensors array and combination of the PCA with Wilks distribution. Sensors and Actuators, B: Chemical, 124(2), 393–397. http://doi.org/http://dx.doi.org/10.1016/j.snb.2007.01.008

Zuluaga, C., Serrato, J., & Quicazán, M. (2015). Chemical, nutritional and bioactive characterization of Colombian beebread. Chemical Engineering Transactions, 43, 175–180. http://doi.org/DOI: 10.3303/CET1543030

How to Cite

APA

Correa, A. R., Cuenca, M. M., Zuluaga, C. M., Scampicchio, M. M. and Quicazán, M. C. (2017). Validation of honey-bee smelling profile by using a commercial electronic nose. Ingeniería e Investigación, 37(3), 45–51. https://doi.org/10.15446/ing.investig.v37n3.59656

ACM

[1]
Correa, A.R., Cuenca, M.M., Zuluaga, C.M., Scampicchio, M.M. and Quicazán, M.C. 2017. Validation of honey-bee smelling profile by using a commercial electronic nose. Ingeniería e Investigación. 37, 3 (Sep. 2017), 45–51. DOI:https://doi.org/10.15446/ing.investig.v37n3.59656.

ACS

(1)
Correa, A. R.; Cuenca, M. M.; Zuluaga, C. M.; Scampicchio, M. M.; Quicazán, M. C. Validation of honey-bee smelling profile by using a commercial electronic nose. Ing. Inv. 2017, 37, 45-51.

ABNT

CORREA, A. R.; CUENCA, M. M.; ZULUAGA, C. M.; SCAMPICCHIO, M. M.; QUICAZÁN, M. C. Validation of honey-bee smelling profile by using a commercial electronic nose. Ingeniería e Investigación, [S. l.], v. 37, n. 3, p. 45–51, 2017. DOI: 10.15446/ing.investig.v37n3.59656. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/59656. Acesso em: 3 dec. 2024.

Chicago

Correa, Ana R., Martha M. Cuenca, Carlos M. Zuluaga, Matteo M. Scampicchio, and Marta C. Quicazán. 2017. “Validation of honey-bee smelling profile by using a commercial electronic nose”. Ingeniería E Investigación 37 (3):45-51. https://doi.org/10.15446/ing.investig.v37n3.59656.

Harvard

Correa, A. R., Cuenca, M. M., Zuluaga, C. M., Scampicchio, M. M. and Quicazán, M. C. (2017) “Validation of honey-bee smelling profile by using a commercial electronic nose”, Ingeniería e Investigación, 37(3), pp. 45–51. doi: 10.15446/ing.investig.v37n3.59656.

IEEE

[1]
A. R. Correa, M. M. Cuenca, C. M. Zuluaga, M. M. Scampicchio, and M. C. Quicazán, “Validation of honey-bee smelling profile by using a commercial electronic nose”, Ing. Inv., vol. 37, no. 3, pp. 45–51, Sep. 2017.

MLA

Correa, A. R., M. M. Cuenca, C. M. Zuluaga, M. M. Scampicchio, and M. C. Quicazán. “Validation of honey-bee smelling profile by using a commercial electronic nose”. Ingeniería e Investigación, vol. 37, no. 3, Sept. 2017, pp. 45-51, doi:10.15446/ing.investig.v37n3.59656.

Turabian

Correa, Ana R., Martha M. Cuenca, Carlos M. Zuluaga, Matteo M. Scampicchio, and Marta C. Quicazán. “Validation of honey-bee smelling profile by using a commercial electronic nose”. Ingeniería e Investigación 37, no. 3 (September 1, 2017): 45–51. Accessed December 3, 2024. https://revistas.unal.edu.co/index.php/ingeinv/article/view/59656.

Vancouver

1.
Correa AR, Cuenca MM, Zuluaga CM, Scampicchio MM, Quicazán MC. Validation of honey-bee smelling profile by using a commercial electronic nose. Ing. Inv. [Internet]. 2017 Sep. 1 [cited 2024 Dec. 3];37(3):45-51. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/59656

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Angela María Cortés-Gómez, Gabriel Ignacio Rico-Aristizábal, Angela Rocio Amarillo-Suarez. (2023). Una revisión pertinente en momentos de pérdida de biodiversidad: estado actual y vacíos de conocimiento en abejas (Hymenoptera: Apoidea) en Colombia. Caldasia, 45(2) https://doi.org/10.15446/caldasia.v45n2.101252.

2. Wellington Belarmino Gonçalves, Wanderson Sirley Reis Teixeira, Evelyn Perez Cervantes, Mateus de Souza Ribeiro Mioni, Aryele Nunes da Cruz Encide Sampaio, Otávio Augusto Martins, Jonas Gruber, Juliano Gonçalves Pereira. (2023). Application of an Electronic Nose as a New Technology for Rapid Detection of Adulteration in Honey. Applied Sciences, 13(8), p.4881. https://doi.org/10.3390/app13084881.

3. Ziying Wang, Pingping Ren, Yongning Wu, Qinghua He. (2021). Recent advances in analytical techniques for the detection of adulteration and authenticity of bee products – A review. Food Additives & Contaminants: Part A, 38(4), p.533. https://doi.org/10.1080/19440049.2020.1871081.

Dimensions

PlumX

Article abstract page views

639

Downloads

Download data is not yet available.