Published

2018-01-01

Soymilk plant simulation to predict the formula of a new Hypothetical Product

Simulación de una planta de leche de soya para predecir la fórmula de un nuevo producto hipotético

DOI:

https://doi.org/10.15446/ing.investig.v38n1.63781

Keywords:

Non-ideal Model Mixer, Soybean, Real Batch Mixer, Hypothetical Molecular formula. (en)
Modelo no ideal de mezclador, Semilla de soya, Mezclador batch real, Formula molecular Hipotética (es)

Downloads

Authors

  • Iacobi Boanerges Boanerges Industrial University of Santander
Ideal Patterns reactors alteration by real reactor patterns, for better accuracy was done using industrial software: Aspen Plus and Hysys Version 7.1 to represent the batch real mixer and soymilk production system. Fluid package for properties prediction was chosen from the software list. A feed steam of 41,67 Kg/h (Soybean) was taken; mass fractions were given by element since the Soybean has a wide blend of substances which cannot be described as a unique compound formula. The elements were C, N, H, O, S, Na, K, Mg, Ca, Fe, P, and Cu. Final flow of 8,333 Kg/h was used to achieve the objective of this study: the elemental analysis method for the hypothetical new product prediction (based only in presence of Amino-acids and other macro and multiple substances). The macromolecules described here are the onset for new specific soymilk compounds such as the concluded on this study. Fulminic Acid Family compound and the protein analysis may correspond to new proteins which are not well-known such as the ones found in studies by the Hospital de Rhode Island in 2014. Presence of Fe and Cu in soybean was ascribed to the micronutrients that could be present in the soil of crop cultivation and in soybeans by absorption.
La alteración de modelos de reactores ideales por modelos reales para mayor precisión fue hecha usando un software industrial: Aspen Hysys Versión 7.1 para representar el mezclador batch real y el sistema de producción de leche de soya. El paquete termodinámico de fluidos fue escogido de una de las listas del software. Una corriente de alimentación de 41,67 Kg/h (Soya) fue tomada; las composiciones en fracciones másicas fueron dadas por elemento puesto que las semillas de soya tienen una amplia mezcla de sustancias las cuales no pueden ser descritas como una formula molecular única y sencilla. Los elementos fueron: C, N, H, O, S, Na, K, Mg, Ca, Fe, P, y Cu. El flujo Final de 8,333 Kg/h fue usado para el objetivo de este estudio: El método de análisis elemental para la predicción de un Nuevo posible producto en la composición de la leche de soya (basado solamente en la presencia de amino ácido, y otras macro y múltiples substancias). Las macromoléculas descritas aquí son el inicio para nuevos y específicos componentes de la leche de soya tales como los concluidos en éste estudio. Componente de la familia del ácido fulmínico y el análisis de proteína puede corresponder a nuevas proteínas las cuales no son bien conocidas como la encontrada en los estudios por el hospital de Rhode Island en 2014. La Presencia de Fe y Cu en las semillas de soya fueron atribuidas a los micronutrientes presentes por absorción del suelo del cultivo.
RII38VOL1_Art5_63781

Soymilk plant simulation to predict the formula
of a new Hypothetical Product

Simulación de una planta de leche de soya para predecir
la fórmula de un nuevo producto hipotético

Iacobi Boanerges-Boanerges 1


1Chemical Engineer, UIS, Colombia. M.Sc. Student in Agronomy, UFG, Brazil. CEO - President, AGA Biotechnology Inc., Colombia. E-mail: iacobiboanerges7@gmail.com


How to cite: Boanerges-Boanerges, I. (2018). Soymilk plant simulation to predict the formula of a new Hypothetical Product. Ingeniería e Investigación, 38(1), 46-51. DOI: 10.15446/ing.investig.v38n1.63781.


ABSTRACT

Ideal Patterns reactors alteration by real reactor patterns, for better accuracy was done using industrial software: Aspen Plus and Hysys Version 7.1 to represent the batch real mixer and soymilk production system. Fluid package for properties prediction was chosen from the software list. A feed steam of 41,67 Kg/h (Soybean) was taken; mass fractions were given by element since the Soybean has a wide blend of substances which cannot be described as a unique compound formula. The elements were C, N, H, O, S, Na, K, Mg, Ca, Fe, P, and Cu. Final flow of 8,333 Kg/h was used to achieve the objective of this study: the elemental analysis method for the hypothetical new product prediction (based only in presence of Amino-acids and other macro and multiple substances). The macromolecules described here are the onset for new specific soymilk compounds such as the concluded on this study. Fulminic Acid Family compound and the protein analysis may correspond to new proteins which are not well-known such as the ones found in studies by the Hospital de Rhode Island in 2014. Presence of Fe and Cu in soybean was ascribed to the micronutrients that could be present in the soil of crop cultivation and in soybeans by absorption.


Keywords: Non-ideal Model Mixer, Soybean, Real Batch Mixer, Hypothetical Molecular formula.


RESUMEN

La alteración de modelos de reactores ideales por modelos reales para mayor precisión fue hecha usando un software industrial: Aspen Hysys Versión 7.1 para representar el mezclador batch real y el sistema de producción de leche de soya. El paquete termodinámico de fluidos fue escogido de una de las listas del software. Una corriente de alimentación de 41,67 Kg/h (Soya) fue tomada; las composiciones en fracciones másicas fueron dadas por elemento puesto que las semillas de soya tienen una amplia mezcla de sustancias las cuales no pueden ser descritas como una formula molecular única y sencilla. Los elementos fueron: C, N, H, O, S, Na, K, Mg, Ca, Fe, P, y Cu. El flujo Final de 8,333 Kg/h fue usado para el objetivo de este estudio: El método de análisis elemental para la predicción de un Nuevo posible producto en la composición de la leche de soya (basado solamente en la presencia de amino ácido, y otras macro y múltiples substancias). Las macromoléculas descritas aquí son el inicio para nuevos y específicos componentes de la leche de soya tales como los concluidos en éste estudio. Componente de la familia del ácido fulmínico y el análisis de proteína puede corresponder a nuevas proteínas las cuales no son bien conocidas como la encontrada en los estudios por el hospital de Rhode Island en 2014. La Presencia de Fe y Cu en las semillas de soya fueron atribuidas a los micronutrientes presentes por absorción del suelo del cultivo.


Palabras clave: Modelo no ideal de mezclador, Semilla de soya, Mezclador batch real, Formula molecular Hipotética.


Received: March 31st 2017

Accepted: November 27th 2017


 

Introduction

 

Soybean is one of the most economically important crops in the USA whilst in Europe it is very limited, due to climate and soil conditions (A. Geoffrey Norman, 2006). Neither all tank reactors are perfectly mixed, nor do all tanks have their composition and temperature independent from the length of the reactor (Plug-flow behavior – Ideal Reactor) (H. Scott Fogler, 2006). For Soymilk production, this is the case. The latter is an inexpensive source of protein, minerals, carbohydrates, oil (blends), vitamins and calories for human consumption. All its compounds formula have not been described completely due to the different species and varieties in the world and their chemical variation such as the well-known health benefits: Proteins, Isoflavones, and dietary fibre (glucose, uronic acids, galactose, arabinose and xylose) – (Ren, Liu, Endo, Takagi & Hayashi, 2006). Moreover, Soymilk is a low-cost substitute for dairy milk for the poor in the developing countries. Being free of cholesterol, gluten and lactose, soymilk is also a suitable food for lactose-intolerant consumers, vegetarians and milk-allergy patients. Today, consumer demands are more and more directed toward high-quality, additive free, minimally processed, nutritious, and deteriorative organisms as well as inactivate undesirable enzymes (Seibel & Beleia, 2009). Nevertheless, high pasteurization temperatures impact negatively on the nutritional quality and taste of milk (Chou & Hou, 2010). Soybean seeds are known to contain different anti-nutritive factors, such as: trypsin inhibitors, phytic acid, raffinose and stachyose many of which lose their effects after processing. Previous research (Becker-Ritt, Mulinari, Vasconcelos, & Carlini, 2004; Kumar, Rani, Solanki, & Hussain, 2006) shows that there is an increasing interest from scientists in soybean which is focused on the characterization of its components. The aim of this paper is attain new data and information about the Soymilk composition which may be relevant to the scientific and industrial – health community, using a Simulation Aspen Hysys software which has customer testimonials from: LG Chemistry, Chevron, Arithmetek, Siam, Petro-bras, Campbell, ConocoPhillips, Fluor, Hitachi Zosen, Genesis Consulting, INEOS and others (Fusco, 2013). The macromolecules described here are the onset for new specific soymilk compounds.

 

Materials and methods

Soybean samples and water extract
of soybeans (soymilk)

0,5 Kg/h were feedstock for the process resembling the one undergone in markets in Brazil and Canada, taking care to ensure that good quality of soybeans (Chemical composition). Whole soybeans were first washed and soaked with hot water and undergo pre-heating, to inactivate the Lipoxigenase to foresee bad properties in the final flavor, until the water boiling point (at 89,326 KPa) – (CDMB 2013) for 5 min. The soybeans were blended with 2 times of volume of soybean in water, then the soybeans were taken in a grinding unit for 3 minutes. Then the mixture of soybean was filtered in a 1,2 µm filter. The solid residue was used to measure the PH between 8 and 8,5 in two measures. The final liquid filtered was heated (138 °C) before entry to the pasteurization process 600 MPA and (148 °C) streamed to a container at -2 °C and 89.326 KPa in 3 seconds (Figure 1).

 

Soybean composition and Soybean
composition prediction.

 

Table 1. Chemical composition prediction through
the software for soybeans

Compound

Mass
Fractions

Vapour
Phase

Aqueous
Phase

Solid
Phase

Proline

0,000000

0,000000

0,000000

0,000000

Valine

0,000000

0,000000

0,000000

0,000000

Niacin

0,000000

0,000000

0,000000

0,000000

Thiamin

0,007406

0,000000

0,137357

0,000000

Stachyose

0,000000

0,000000

0,000000

0,000000

Raffinose

0,000000

0,000000

0,000000

0,00000

Sucrose

0,000000

0,000000

0,000000

0,00000

Daldzein

0,000000

0,000000

0,000000

0,00000

Cu - Copper

0,000001

0,000000

0,000057

0,00000

Calcium

0,002129

0,000000

0,000000

0,004125

Carbon

0,479430

0,000000

0,000000

0,928818

Nitrogen

0,136082

0,291030

0,000209

0,000000

Oxygen

0,263397

0,563316

0,000294

0,000000

Sodium

0,000009

0,000020

0,000005

0,000000

Magnesium

0,002037

0,000000

0,125306

0,000000

Phosphorus

0,005369

0,002800

0,249787

0,000000

Iron Fe

0,000087

0,000186

0,000000

0,000000

Potassium

0,017589

0,037344

0,007849

0,000000

Water

0,019070

0,024131

0,479102

0,000000

Hydrogen

0,032781

0,070108

0,000034

0,000000

Sulfur

S_Rhombic

0,034613

0,000000

0,000000

0,067057

Total

1,000000

Source: Software Aspen Tech Hysys v 7.1

 

In this Stage of the process, 3 units were included (Heating, Pasteurization and Cooling) to guarantee the quality of the food by the microorganism inactivation. The fluid packages fo this stage were the Generic COMthermo Pkg. (Van Laar – Virial for Liquid blends) and extended NRTL- Virial (For Soybean Solid properties and Pasteurization Final Product). The heating unit was included to prevent damage due to the high increase of the temperature at Pressure values of 600 MPa. Since an increase (DT = 123 °C and DP = 498675 Pa) is furnish for the entire process, the latter was caused by the collisions of the particles. Besides, the Heat supply from the heat source makes necessary a rigorous and strict control for the temperature, the Heating unit at 101,325 KPa is a cheaper alternative. In this stage, the condition for the inlet and outlet streams can be appreciated including the duty (Heat Flux) 3,766 KJ/h. The unit of cooling is included to guarantee the inactivation of pathogenic microorganism by the collision of hot particles (148 °C) with a container with fluid at -2 °C value.

 

Table 2. Thermodynamics properties for the soybeans after Pre-Heating Stage (Inactive Lipoxygenase)

Stream Name

Soybean Enzymes

Vapour Phase

Liquid
Phase

Solid
Phase

Vapour
/Phase Fraction

0,4004

0,4004

0,0020

0,5976

Temperature (Kelvin)

373,15

373,15

373,15

373,15

Pressure (Kpa)

101,30

101,30

101,30

101,30

MolarFlow (kgmole/h)

2,6830
E-02

1,0560
E-02

5,3030
E-05

1,5770E-02

MassFlow (kg/h)

0,5000

0,3085

0,0014

0,1901

Std Ideal liqvol Flow (m3/h)

4,6060
E-04

3,4370
E-04

1,0090
E-06

1,1590E-04

MolarEnthalpy (KJ/Kgmole)

-4771

-12670

-162900

1054

MolarEntropy (KJ/KgmoleC)

65,79

154,8

-382,7

7,685

HeatFlow (KJ/h)

-125,9

-133,8

-8,637

16,61

LiqVol Flow@ StdCond (m3/h)

9,6510
E- 07

1,1590E- 04

Source: Software Aspen Tech Hysys v 7.1

 

Figure 1. - Soymilk Production, Plant Simulation by Aspen Hysys

Source: Aspen Tech Hysys v 7.1 – Flow sheet panel

Stage1, 2 and 3 are continuously linked in a unique flow sheet diagram (Figure adapted for the journal template)

 

Results and discussion

 

Element composition and soymilk compounds

The final soymilk was formed by 16 amino-acids, the Polysaccharides stachyose, Rafinosse, Sucrose, Daidzein as the total isoflavones, and thiamin and niacin as Vitamin B content. The final mass fractions of Carbon wC = 0.002455, Nitrogen wN = 0.005726, and Oxygen wO = 0.006541, Copper wCu = 0,012988, Calcium wCa = 0,008193, Sodium wNa = 0,004699, Magnesium wMg = 0,004968, Phosphorus wP = 0,006632, iron wFe = 0,011416, Potassium wK = 0,007992, Hydrogen wH = 0,000412, Sulfur wS = 0,006555 indicate a presence of macromolecules besides the cited above, which chemical Structures can be derived from the empirical formula and subsequently by the Global molecular formula.

 

Table 3. Pasteurization Thermodynamics conditions for UHT and UHPH units

Name

SM 1

Soymilk
Hot

Soymilk
Lost (Vapour)

HeatLoss

Vpour/PhaseFraction

0,1359

0,1111

0,2956

Temperature
(Celcius)

138

148

100

Pressure (Kpa)

101,3

101,3

6,00E+05

Molar Flow (kgmole/h)

2,78 E-02

6,61E-04

3600

Mass Flow (kg/h)

4,088

0,1000

2,94E+05

Std Ideal liqvol Flow (m3/h)

3,01
E-03

7,35E-05

225,9

Molar Enthalpy (KJ/Kgmole)

-3,17 E+05

-3,66 E+05

-1,73E+05

MolarEntropy(KJ/Kgmole*C)

-6455

-6903

-4101

Heat Flow (KJ/h)

-241,8

-6,24E+08

-3,756

Source: AspenTech Hysys – Flowsheet Conditions

 

Global molecular formula assessment

(For t = 1 hour) Source data: Table 4

mi = mt * wi
Equation (1) – Mass calculation for each component

mi = mass of each element
mt= total mass
wi = mass fractio

Equation (2) – Mole calculation for each component
For Carbon replacing (1) e.g.

mc = mt * wc

 

Equations and calculation procedure

(1.1)

(2.1)

(1.2)

(2.2)

(1.3)

(2.3)

(1.4)

(2.4)

(1.5)

(2.5)

(1.6)

(2.6)

(1.7)

(2.7)

(1.8)

(2.8)

(1.9)

(2.9)

(1.10)

(2.10)

(1.11)

(2.11)

(1.12)

(2.12)

 

After dividing all moles in 0,001703 k-mole to find the mole empirical ratio we obtain:

C H2S N2O2

Cu Ca Na Mg P1,05 Fe K

We must find a ratio of integers according to the law of mass action.

 

Table 4. Final Element composition of soymilk (compounds sheet)

Compound

Mass
Fractions

Vapour
Phase

Liquid
Phase

Solid
Phase

Aspartic Acid

0,027208

0,000321

0,029642

0,000000

Glutamic Acid

0,030076

0,000093

0,032784

0,000000

Serine

0,021483

0,000007

0,023421

0,000000

Histidine

0,031716

0,000073

0,034574

0,000000

Threonine

0,024350

0,000062

0,026544

0,000000

Arginine

0,035609

0,001527

0,038715

0,000000

Alanine

0,018212

0,000025

0,019854

0,000000

Tyrosine

0,037038

0,000044

0,040378

0,000000

Cystine

0,049121

0,030068

0,051405

0,000000

Methionine

0,030501

0,000252

0,033236

0,000000

Phenylanine

0,033768

0,000351

0,036791

0,000000

Isoleucine

0,026814

0,000011

0,029234

0,000000

Leucine

0,026814

0,001408

0,029134

0,000000

Lysine

0,029883

0,000178

0,032568

0,000000

Proline

0,023535

0,000303

0,025637

0,000000

Valine

0,023947

0,000458

0,026076

0,000000

Niacin

0,025166

0,000094

0,027431

0,000000

Thiamin

0,061490

0,213281

0,051788

0,000000

Stachyose

0,136259

0,010555

0,147805

0,000000

Raffinose

0,103112

0,001424

0,112318

0,000000

Sucrose

0,069971

0,085997

0,070137

0,000000

Daldzein

0,051969

0,017003

0,005544

0,000000

Cu - Copper

0,012988

0,182700

0,001094

0,000000

Calcium

0,008193

0,000000

0,000000

0,476240

Carbon

0,002455

0,000000

0,000000

0,142723

Nitrogen

0,005726

0,087266

0,000002

0,000000

Oxygen

0,006541

0,099635

0,000006

0,000000

Sodium

0,004699

0,022191

0,003537

0,000000

Magnesium

0,004968

0,000000

0,005417

0,000000

Phosphorus

0,006322

0,002827

0,006701

0,000000

Iron Fe

0,011416

0,171955

0,000148

0,000000

Potassium

0,007992

0,040176

0,005840

0,000000

Water

0,003683

0,023443

0,002338

0,000000

Source: Aspen tech Hysys v. 7.1

 

C20 H40 S20 N40 O40 (Macro-molecule)

Cu20 Ca20 Na20 Mg20 P21 Fe20 K20 (Mineral ratio)

Table 5. Final Element composition of soymilk (compounds sheet)

Hydrogen

0,000412

0,006274

0,000001

0,000000

Sulfur S_Rhombic

0,006555

0,000000

0,000000

0,381037

Total

1,000000

Source: Aspen tech Hysys v. 7.1

 

Conclusions

 

Based in the composition predicted by the software, we can make a classification of the specie for the soybean (Glycine Max. L.). It resulted in the presence of C20 H40 S20 N40 O40 that indicates the presence of Protein (the presence of an essential amino acid with sulfur). Multiple Biomolecule options can be derived from this analysis such as: Organometallic Compounds, OrganoPhosphorus Compounds, Proteins, Carbohydrates, Fat, Vitamins. One option for this could be large linear chains with methionine or cysteine both considered as unique source. 1,1111 mole of C8H18N2O4S2 or a 1 mole of (CH2(NO)2)20 (Fulminic Acid Family compound) according to (H Yang & L. Zhang, 2007), and an Organ phosphorus compound (Phospholipids). Although this last one is present mostly in pesticides, two hypothesis can be considered: The presence of them due to residuals in soybean after chemical process in a non-mortal level, or their presence as any of these compounds: P ( = O)(OR)3; RP ( = O) (OR’)2; R3P = O;. According to (Seibel & Beleia 2009), one kind is C6H18O24P6 written as (C2H6)3(O4P)6 (phytic acid) where the remaining 15 atoms of P would be inorganic Phosphorus. The remaining proportions of mole for protein analysis may correspond to new proteins which are not well-known such as those found in studies by the Hospital de Rhode Island (Jonathan Kurtis, 2014 PfSEA-1 2014 Journal: Science) for the presence of trace elements (Micronutrients – trace elements Cu and Fe) (Organometallic compounds).

 

Acknowledgements

 

To the Industrial university of Santander, for furnishing the installation, equipment and software.

 

References

Luz Stella Vanegas Pérez, Diego Alonso Restrepo Molina, Jairo Humberto López Vargas, Características de las bebidas con proteína de soya. (2009). Revista Facultad Nacional de Agronomía Medellín Vol. 62, Núm. 2

Benjamin Caballero Paul Finglas Fidel Toldra. Encyclopedia of food science, food technology and nutrition. (2007b). London: Academic Press.

Huisman, M. M. H. (2010). Elucidation of the chemical fine structure of polysaccharides from soybean and maize kernel Cell wall polysaccharides from soybean (Glycine max.) meal. Isolation and characterization. Carbohydrate Polymers, 37, 87– 95.

James, C. S. Determination of fat by the Soxhlet methods. In C. S. James (Ed.). (2010). Analytical chemistry of foods (91–92). London: Blackie Academic & Professional. Kumar, V., Rani, A., Solanki, S., & Hussain, S. M. (2009).

Kumar, V., Rani, A., Solanki, S., & Hussain, S. M. (2009). Influence of growing environment on the biochemical composition and physical characteristics of soybean seed. Journal of Food Composition and Analysis, 19, 188–195.

Liu, K. (2008). Chemistry and nutritional value of soybean components. Edited by Macrae, R., Robinson, R. K., & Sadler, M. J.

Maeda, H. (2010). Soluble soybean polysaccharide. In G. O. Phillips & Williams PA (eds) Handbook of hydrocolloids, 2nd edn..)

Neusa SEIBE BJFT. v.12, n.2, p.113-122 (2009) The chemical characteristics and technological functionality of soybean based ingredients [Glycine Max (L.) Merrill]: carbohydrates and proteins

N.G. Stoforos, P.S. Taoukis. 2005. Pages 495-503A.C. Polydera, Food Chemistry, Volume 91, Issue 3.

Plant pre-breeding for increased protein content in soybean Glycine max (L.) Merrill Journal: acta_agronomica Vol. 66, Núm. 4 (2017)

Ren, H., Liu, H., Endo, H., Takagi, Y., & Hayashi, T. Antimutagenic and anti-oxidative activities found in Chinese traditional soybean fermented products furu. Food Chemistry, 95, 71–76. (2011).

Rodriguez, R., Jimenez, A., Fernandez-Bolaños, J., Guille´n, R., & Heredia, A. (2011). Dietary fibre from vegetable products as source of functional ingredients. Trends in Food Science &Technology, 17,3–15.

Rostagno, M. A., Palma, M., & Barroso, C. G. (2011). Short-term Stability of soy isoflavones extracts: sample conservation aspects. Food Chemistry, 93, 557–564.

Scheppach, W., Luethrs, H., Melcher, R., Gostner, A., Schauber, J., Kudlich, T., et al. (2010). Anti-inflammatory and ant carcino geniceffects of dietary fiber. Clinical Nutrition Supplements, 1(2), 51–58.

Sosulski, F. W., Elkowicz, L., & Reichert, R. D. (2009). Oligosaccharides in eleven legumes and their air-classified protein and starch fractions. Journal Food Science, 47, 498 – 502.

Tomasula, M.F. Kozempel, R.P. Konstance, D. Gregg, S. Boettcher, B. Baxt, L.L. Rodriguez. (2007). Journal of Dairy Science, Volume 90, Issue 7, Pages 3202-3211P.M.

 

Attribution 4.0 International (CC BY 4.0) Share - Adapt

References

Luz Stella Vanegas Pérez, Diego Alonso Restrepo Molina, Jairo Humberto López Vargas, Características de las bebidas con proteína de soya. (2009). Revista Facultad Nacional de Agronomía Medellín Vol. 62, Núm. 2

Benjamin Caballero Paul Finglas Fidel Toldra. Encyclopedia of food science, food technology and nutrition. (2007b). London: Academic Press.

Huisman, M. M. H. (2010). Elucidation of the chemical fine structure of polysaccharides from soybean and maize kernel Cell wall polysaccharides from soybean (Glycine max.) meal. Isolation and characterization. Carbohydrate Polymers, 37, 87– 95.

James, C. S. Determination of fat by the Soxhlet methods. In C. S. James (Ed.). (2010). Analytical chemistry of foods (91–92). London: Blackie Academic & Professional. Kumar, V., Rani, A., Solanki, S., & Hussain, S. M. (2009).

Kumar, V., Rani, A., Solanki, S., & Hussain, S. M. (2009). Influence of growing environment on the biochemical composition and physical characteristics of soybean seed. Journal of Food Composition and Analysis, 19, 188–195.

Liu, K. (2008). Chemistry and nutritional value of soybean components. Edited by Macrae, R., Robinson, R. K., & Sadler, M. J. Maeda, H. (2010). Soluble soybean polysaccharide. In G. O. Phillips & Williams PA (eds) Handbook of hydrocolloids, 2nd edn..)

Neusa SEIBE BJFT. v.12, n.2, p.113-122 (2009) The chemical characteristics and technological functionality of soybean based ingredients [Glycine Max (L.) Merrill]: carbohydrates and proteins

N.G. Stoforos, P.S. Taoukis. 2005. Pages 495-503A.C. Polydera, Food Chemistry, Volume 91, Issue 3. Plant pre-breeding for increased protein content in soybean Glycine max (L.) Merrill Journal: acta_agronomica Vol. 66, Núm. 4 (2017)

Ren, H., Liu, H., Endo, H., Takagi, Y., & Hayashi, T. Antimutagenic and anti-oxidative activities found in Chinese traditional soybean fermented products furu. Food Chemistry, 95, 71–76. (2011).

Rodriguez, R., Jimenez, A., Fernandez-Bolaños, J., Guille´n, R., & Heredia, A. (2011). Dietary fibre from vegetable products as source of functional ingredients. Trends in Food Science &Technology, 17,3–15.

Rostagno, M. A., Palma, M., & Barroso, C. G. (2011). Short-term Stability of soy isoflavones extracts: sample conservation aspects. Food Chemistry, 93, 557–564.

Scheppach, W., Luethrs, H., Melcher, R., Gostner, A., Schauber, J., Kudlich, T., et al. (2010). Anti-inflammatory and ant carcino geniceffects of dietary fiber. Clinical Nutrition Supplements, 1(2), 51–58.

Sosulski, F. W., Elkowicz, L., & Reichert, R. D. (2009). Oligosaccharides in eleven legumes and their air-classified protein and starch fractions. Journal Food Science, 47, 498– 502.

Tomasula, M.F. Kozempel, R.P. Konstance, D. Gregg, S. Boettcher, B. Baxt, L.L. Rodriguez. (2007). Journal of Dairy Science, Volume 90, Issue 7, Pages 3202-3211P.M.

How to Cite

APA

Boanerges Boanerges, I. (2018). Soymilk plant simulation to predict the formula of a new Hypothetical Product. Ingeniería e Investigación, 38(1), 46–51. https://doi.org/10.15446/ing.investig.v38n1.63781

ACM

[1]
Boanerges Boanerges, I. 2018. Soymilk plant simulation to predict the formula of a new Hypothetical Product. Ingeniería e Investigación. 38, 1 (Jan. 2018), 46–51. DOI:https://doi.org/10.15446/ing.investig.v38n1.63781.

ACS

(1)
Boanerges Boanerges, I. Soymilk plant simulation to predict the formula of a new Hypothetical Product. Ing. Inv. 2018, 38, 46-51.

ABNT

BOANERGES BOANERGES, I. Soymilk plant simulation to predict the formula of a new Hypothetical Product. Ingeniería e Investigación, [S. l.], v. 38, n. 1, p. 46–51, 2018. DOI: 10.15446/ing.investig.v38n1.63781. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/63781. Acesso em: 24 dec. 2025.

Chicago

Boanerges Boanerges, Iacobi. 2018. “Soymilk plant simulation to predict the formula of a new Hypothetical Product”. Ingeniería E Investigación 38 (1):46-51. https://doi.org/10.15446/ing.investig.v38n1.63781.

Harvard

Boanerges Boanerges, I. (2018) “Soymilk plant simulation to predict the formula of a new Hypothetical Product”, Ingeniería e Investigación, 38(1), pp. 46–51. doi: 10.15446/ing.investig.v38n1.63781.

IEEE

[1]
I. Boanerges Boanerges, “Soymilk plant simulation to predict the formula of a new Hypothetical Product”, Ing. Inv., vol. 38, no. 1, pp. 46–51, Jan. 2018.

MLA

Boanerges Boanerges, I. “Soymilk plant simulation to predict the formula of a new Hypothetical Product”. Ingeniería e Investigación, vol. 38, no. 1, Jan. 2018, pp. 46-51, doi:10.15446/ing.investig.v38n1.63781.

Turabian

Boanerges Boanerges, Iacobi. “Soymilk plant simulation to predict the formula of a new Hypothetical Product”. Ingeniería e Investigación 38, no. 1 (January 1, 2018): 46–51. Accessed December 24, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/63781.

Vancouver

1.
Boanerges Boanerges I. Soymilk plant simulation to predict the formula of a new Hypothetical Product. Ing. Inv. [Internet]. 2018 Jan. 1 [cited 2025 Dec. 24];38(1):46-51. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/63781

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

1396

Downloads

Download data is not yet available.