Published

2020-01-01

SAP Algorithm for Citation Analysis: An improvement to Tree of Science

Algoritmo SAP para análisis de citaciones: Una mejora al Árbol de la Ciencia

DOI:

https://doi.org/10.15446/ing.investig.v40n1.77718

Keywords:

Tree of Science, SAP, Algorithm, Citation analysis (en)
Tree of Science, SAP, Algotirmo, Análsis de citaciones (es)

Downloads

Authors

  • Daniel Stiven Valencia-Hernandez Universidad Nacional de Colombia
  • Sebastian Robledo Universidad Católica Luis Amigó
  • Ricardo Pinilla Universidad Nacional de Colombia
  • Nestor Darío Duque-Méndez Universidad Nacional de Colombia https://orcid.org/0000-0002-8078-8525
  • Gerard Olivar-Tost Universidad Nacional de Colombia

Tree of Science (ToS) is a web-based tool which uses the network structure of paper citation to identify relevant literature. ToS shows the information in the form of a tree, where the articles located in the roots are the classics, in the trunk are the structural publications, and leaves are the most current papers. It has been found that some results in the leaves can be separated from the tree. Therefore, an algorithm (SAP) is proposed, in order to improve results in the leaves. Two improvements are presented: articles located in the leaves are from the last five years, and they are connected to root and trunk articles through their citations. This improvement facilitates construction of current literature for researchers.

Tree of Science (ToS) es una herramienta web que usa la estructura de la red de citaciones para identificar literatura relevante. ToS muestra la información en forma de árbol, donde los artículos localizados en las raíces son los clásicos, en el tronco están las publicaciones estructurales y las hojas son los artículos más recientes. Se ha encontrado que algunos resultados de las hojas pueden ser separados del tema del árbol. Por lo tanto, se propone el algoritmo SAP para mejorar los resultados de las hojas. Se presentan dos mejoras: los artículos localizados en las hojas son de los últimos 5 años, y también, estos están conectados a la raíz y al tronco a través de sus citaciones. Esta mejora facilita la construcción de literatura actual a los investigadores.

Recibido: 7 de febrero de 2019; Aceptado: 30 de enero de 2020

ABSTRACT

Tree of Science (ToS) is a web-based tool which uses the network structure of paper citation to identify relevant literature. ToS shows the information in the form of a tree, where the articles located in the roots are the classics, in the trunk are the structural publications, and leaves are the most current papers. It has been found that some results in the leaves can be separated from the tree. Therefore, an algorithm (SAP) is proposed, in order to improve results in the leaves. Two improvements are presented: articles located in the leaves are from the last five years, and they are connected to root and trunk articles through their citations. This improvement facilitates construction of current literature for researchers.

Keywords:

Tree of science, SAP, algorithm, citation analysis.

RESUMEN

Tree of Science (ToS) es una herramienta web que usa la estructura de la red de citaciones para identificar literatura relevante. ToS muestra la información en forma de árbol, donde los artículos localizados en las raíces son los clásicos, en el tronco están las publicaciones estructurales y las hojas son los artículos más recientes. Se ha encontrado que algunos resultados de las hojas pueden ser separados del tema del árbol. Por lo tanto, se propone el algoritmo SAP para mejorar los resultados de las hojas. Se presentan dos mejoras: los artículos localizados en las hojas son de los últimos 5 años, y también, estos están conectados a la raíz y al tronco a través de sus citaciones. Esta mejora facilita la construcción de literatura actual a los investigadores.

Palabras clave:

Tree of Science, SAP, algoritmo, análisis de citaciones.

Introduction

Tree of Science (ToS) is a web-based tool that uses graph algorithms to optimize the search and selection of published papers. ToS was created at Universidad Nacional de Colombia (Robledo et al., Osorio-Zuluaga, and López-Espinosa, 2014), and the algorithm is explained elsewhere (Zuluaga et al., 2016). ToS is a specialized tool for researchers interested in tracking the way in which a particular topic evolves over time. Firstly, users must download Web of Science (WoS) query results. Then, they upload the file to ToS (tos.manizales.unal.edu.co). With this data, ToS shows the results in the form of a tree: root, trunk, and leaves. Papers in the roots are the classics, while those in the trunk are considered structural publications, and current papers are the leaves. In addition, ToS uses scientometric techniques to recommend relevant literature.

Scientometrics refer to the study of science, technology, and innovation from a quantitative perspective. Moreover, it focuses on the measurement of the impact of articles, journals, and institutions, along with the mapping of scientific areas (Leydesdorff, 2013). Examples include citation analysis (Koseoglu, Sehitoglu, and Craft, 2015), co-author analysis (loannidis, 2015), and the impact of institutions (Singh, Uddin, and Pinto, 2015). Thus, the importance of scientometrics is based on the possibility of identifying high impact articles and main researchers, and on recognizing emerging areas of knowledge (Hood and Wilson, 2001).

Scientometrics emerged in the 1930s with the analysis of the distribution frequency of productivity between chemistry and physics by Alfred J. Lotka (1926). After analyzing a number of publications, he concluded that the proportion of researchers making small contributions was 60%. Later, Derek J. de Solla Price (1963), known as the father of scientometrics, formulated Price's Law, which explains that 25% of scientific authors are responsible for 75% of published articles (preferential attraction model). Finally, another important initial contribution in this field was the h-index (Garfield, 1972; Hirsch, 2005), which measures the impact of papers and is well known in the scientific community nowadays. Consequently, these results showed patterns in the scientific world, which can be identified by mathematical and statistical analysis.

Currently, thanks to advances in technology, such as the Internet, it is possible to apply and develop sophisticated scientometric techniques in different fields. For example, a study in nanotechnology and nanoscience shows metrics such as the annual growth rate, authorship patterns, and an index of collaboration (Karpagam, Gopalakrishnan, Natarajan, and Ramesh Babu, 2011). Another investigation in bioenergy from biomass explains the exponential growth and changes in this field (Konur, 2012). Therefore, scientometrics have been a useful tool in recent years to identify emerging areas of science.

Although scientometrics have evolved in the last few years, one of the main challenges is to find accurate methods for the characterization of a scientific area (Koseoglu, Sehitoglu, and Craft, 2015). For this reason, various researchers have proposed other indexes to determine the impact of publications. These include the CDS-index (Vinkler, 2011), multivariate analysis techniques, time series (Leydesdorff, 2013) , and modeling techniques (Mutschke and Mayr, 2014) . However, co-citation analysis has become a well-established topic in scientometrics to identify "sleeping beauty publications" (Fang, 2019 p. 307). Examples of applications of this scientometric techniques are found in reviews about obesity (Landinez, Robledo, and Montoya 2019), Corporate Social Responsibility (Duque and Cervantes-Cervantes, 2019), and in agriculture (Robledo-Buriticá, Aguirre-Alfonso, and Castaño-Zapata, 2019).

During the last years, some graph algorithms have been implemented in co-citation analysis to select relevant literature. For instance, HITS algorithm (Kleinberg, 1999) was applied to reduce ranking bias (Jiang et al. 2016) and Google's PageRank algorithm, to find the most prestigious papers (Chen et al. 2007). Nevertheless, much uncertainty still exists about tracking global knowledge using co-citation analysis (Parolo, Kujala, Kaski, and Kivela, 2019). Hence, this study seeks to improve the ToS algorithm to streamline the research process on a specific topic, in order to fulfill the need for non-conventional literature review techniques (Alulema and Largo, 2019) that other studies have proposed (Sepúlveda and Cravero, 2015).

This paper is structured as follows: First, a few basic definitions about graph theory are presented. Secondly, the methodology is described, detailing the algorithm step by step. Next, the SAP algorithm is applied to create a graph of citation analysis about Word-of-Mouth Marketing, in order to compare it with the current ToS results. Finally, conclusions are addressed, and limitations and implications are discussed.

Some basic definitions

Some basic definitions about graph theory are explained below, according to Johnsonbaugh (1999):

Definition 1 (undirected graph): A graph (or undirected graph) consists of a set of vertices V and a set of edges E, arranged in such a way that each edge e Є E is associated with an unordered pair of vertices. If there is a unique edge e associated with the vertices v and w, it is written as follows: e = (v, w) or e = (w,v). In this context, (v,w) denotes an edge between v and w in an undirected graph and not an ordered pair.

Definition 2 (directed graph): A directed graph (or digraph) G consists of a set of vertices V and a set of edges E, arranged in such a way that each edge e Є E is associated with an ordered pair of vertices. If there is a unique edge e associated with the ordered pair (v, w) of vertices, it is written as follows: e = (v, w), which denotes an edge from v to w, where v is the initial vertex and w is the terminal vertex of the edge e.

Definition 3 (indegree and outdegree of vertex): Let v be a vertex of a directed graph G. The degree of entry of v, denoted by indegree (v), is the number of edges in G with terminal vertex v. The degree of output of v, denoted by outdegree (v), is the number of edges in G whose initial vertex is v.

Definition 4 (subgraph): Let G = (V, E) a graph. G' = (V\E') is a subgraph of G if:

1. V' ⊆ Vand E' ⊆ E.

2. For each edge e' Є E', if e' is incident on v' and w', then v', w' Є V'.

Definition 5 (connected graph): A graph G is connected if there is a walk between every pair of distinct vertices in the graph.

Definition 6 (connected component): A connected component of a graph G isa connected subgraph S of G such that no other connected subgraph of G contains S.

Data

In order to test the algorithm, we used data from Web of Science (WoS). This dataset contains information about articles published by journals from different areas of knowledge. From it, we can extract the citation relationships between papers, authors, publication dates, journals, volume, page, and the Digital Object Identifier (DOI). Similarly, we can create a citation graph with the papers and their references (Zuluagaetal., 2016).

SAP Algorithm

The SAP algorithm was implemented in Python with the graph package igraph. The operation of SAP is explained below.

Description

1. The SAP algorithm consists in six steps: From a subset of papers V, which is obtained from WoS, a directed graph G = (V, E), with all the papers and references is generated, where each directed edge (i, j) of E is a citation from paper p i to p j .

2. Graph G is filtered:

2.1 The largest connected component is obtained.

2.2 Loops are eliminated from the graph obtained in

(2.1).

2.3 Duplicated edges are removed from the graph obtained in (2.2).

2.4 Vertices with indegree 1 and outdegree 0 are eliminated, along with their edges, from the graph obtained in (2.3). This graph is noted by G' = (V',E').

Igraph Description:

2.1 Graph.clusters(), which shows the different components of the graph, and the giant() function are used to select the largest component.

2.2 and 2.3. Graph.simplify() is used to remove repeated loops and edges.

2.3 Graph.vs.select() is used to select the vertices that do not have indegree 1 and outdegree 0.

3. Root classification:

3.1 Vertices with outdegree 0 are selected from V'.

3.2 V root is defined as the set of all vertices obtained in (3.1).

3.3 If r is a root, its SAP is defined as its indegree

Igraph Description:

3.1 Graph.vs.select() is used to choose the vertices with outdegree 0.

3.2 Indegree() is used to determine the input degree

4. Leaves classification:

4.1 Vertices with indegree 0 are selected from V ' .

4.2 V extended leaf is defined as the set of all vertices obtained in (4.1).

4.3 Vertices whose age (time since publication) is not less than the newest vertex age less 5 of V extended leaf , are selected from the vertices obtained in (4.1).

4.4 leaf is defined as the set of all vertices obtained in (4.3).

4.5 If v belongs to V extended_leaf , its SAP is defined as the number of pahts that exist between v and the roots.

Igraph Description:

4.1 Graph.vs.select() is used to choose the vertices with indegree 0.

4.5 Graph.shortest_paths_dijstra() is used to identify paths between the vertices of (V lea f U V extended leaf ) and the roots.

5. Trunk classification

5.1 Vertices of V root are selected.

5.2 Vertices of (5.1) are sorted in descending order according to their SAP value.

5.3 V root selected is defined as the first 10 vertices obtained in (5.2).

5.4 Vertices of V leaf are selected.

5.5 Vertices of (5.4) are sorted in descending order according to their SAP value.

5.6 V leaf selected is defined as the first 60 vertices obtained in (5.5).

5.7 All the vertices that belongs to at least one path between V root selected and V leaf selected , are selected.

5.8 V trunk is defined as the vertices obtained in (5.7).

5.9 If f is a trunk, its SAP is defined as the sum of the SAPs of the vertices that belong to (Vroot selected) ∪ V leaf selected , and are connected with t by one or more paths.

5.10 Vertices whose age (time since publication) is not older than the newest vertex of V trunk , are selected from the vertices obtained in (5.8).

5.11 Vpotential leaf is defined as the set of all the vertices obtained in (5.10).

Igraph Description

5.1 And 5.4 Graph.vs.select() is used to choose the vertices.

5.2 Graph.get_all_simple_paths() is used to select the vertices between V root selected and V leaf selected to save trunk vertices and compute its SAP.

6. Tree construction: Subgraph G = (V, E) of G' = (V',E'), where V = (Vroot ∪ V leaf V trunk ), and E is considered a subset of the edges of E' which only affects the vertices of V is called "Tree of Science" (Robledo et al. 2014).

Application

We compared the results from the ToS with the SAP algorithm to illustrate its operation. The similarities and differences between the two procedures are presented here.

The first step is to define the research topic, in order to obtain the data from WoS. In this case, Word-of-Mouth Marketing (WOMM) is used as the search equation for the time period from January 2001 to August 22, 2017.

Title = (marketing) AND Topic = (Word of Mouth) Indexes: SCI-EXPANDED, SSCI, A&HCI

Exactly 317 papers were extracted with these references. With this data, both algorithms were applied in order to identify the SAP improvements. Table 1 shows the difference between them. The results in the roots and trunk of both algorithms are similar: 90% and 70% respectively. However, ToS performs better in terms of number of citations: 2,819 results in the roots and 1,752 in the trunk. Despite this, SAP has an outstanding performance with more than three times the citation results from ToS.

Table 1: Differences between ToS and SAP algorithm

Similarities Root Trunk Leaves
90% 70% 23%
Differences in citations ToS 2 819 1 752 741
SAP 666 1 001 2 442

Source: Authors

Another important result of the SAP is the age of the papers on the leaves. According to Robledo et al. (2014), leaves are current papers, and a quality indicator of an investigation is the number of recent references. Moreover, Price (1976) suggests that at least 50% of the references should be from the past five years. The SAP meets this requirement by selecting papers from the past five years for the leaves (Figure 1).

The number of paper per year per algorithm.

Figure 1: The number of paper per year per algorithm.

Source: Authors

Conclusions

ToS is a scientometric tool which performs the citation analysis of a graph and shows the results in a form of a tree: root, trunk, and leaves. Most of the results presented by ToS are relevant and important (Robledo et al. 2014). However, there is a lack of precision in the leaves; sometimes publications are not connected to the roots and trunk, and additionally, the leaves are occasionally not current literature. Thus, the goal of this study is to propose a new algorithm called SAP, which improves the results in the leaves.

Results show that SAP is more accurate in this field. It presents the most important current literature. However, this study is limited, and so it must be further expanded, for example, to the evaluation both of different research topics and indicators, in order to understand the pros and cons of the new algorithm.

Acknowledgements

We thank the "Instituto Colombiano para Ciencia y Tecnología" (Colciencias) and its program "Jóvenes investigadores e innovadores". Also, this investigation was partially supported by Universidad Nacional de Colombia under project No. 32059 (Code Hermes), entitled "Consolidación de las líneas de investigación del Grupo de Investigación en Ambientes Inteligentes Adaptativos GAIA" within the "Convocatoria interna de investigación de la Facultad de Administración 2015, para la formulación y ejecución de proyectos de consolidación y/o fortalecimiento de los grupos de investigación. Modalidad 1: Formulación y ejecución de proyectos de consolidación". Wealso would like to thank the Universidad Nacional -Sede Manizales library for its diffusion of ToS, and their support in this project. We thank Universidad Católica Luis Amigó and the research group ECOSOL for the time given to finish this paper. Gerard Olivar-Tost thanks Colciencias for supporting the publication of this paper through the project "Modelado y simulación del Metabolismo Urbano de Bogotá D.C. Código 111974558276". We thank the anonymous reviewers for their insightful suggestions to the manuscript and Oscar David Arbeláez Echeverri and Juan David Alzate Cardona for their support in the algorithm implementation. The repository of the code is in this link https://github.com/coreofscience/python-sap

References

Alulema, F. X. V. and Largo, F. L. (2019). Strategic portfolio of IT projects at universities: A systematic and non-conventional literature review. Ingeniería e Investigación, 39(2). 10.15446/ing.investig.v39n2.72431[CrossRef]

Chen, P., Xie, H., Maslov, S., and Redner, S. (2007). Finding scientific gems with Google's PageRank algorithm. Journal of Informetrics, 1(1), 8-15. 10.1016/j.joi.2006.06.001[CrossRef]

Duque, P. and Cervantes-Cervantes, L. S. (2019). Responsabilidad Social Universitaria: una revisión sistemática y análisis bibliométrico. Estudios Gerenciales, 35(153), 451-464. 10.18046/j.estger.2019.153.3389[CrossRef]

Fang, H. (2019). A transition stage co-citation criterion for identifying the awakeners of sleeping beauty publications. Scientometrics, 121(1), 307-322. 10.1007/s11192-019-03195-9[CrossRef]

Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178(60), 471-479. 10.1126/science.178.4060.471[CrossRef]

Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569-72. 10.1073/pnas.0507655102[CrossRef]

Hood, W. W. and Wilson, C. S. (2001). The literature of biblio-metrics, scientometrics, and informetrics. Scientometrics, 52(2), 291-314. 10.1023/A:1017919924342[CrossRef]

Ioannidis, J. P. A. (2015). A generalized view of self-citation: Direct, co-author, collaborative, and coercive induced self-citation. Journal of Psychosomatic Research, 78(1), 7-11. 10.1016/j.jpsychores.2014.11.008[CrossRef]

Jiang, X., Sun, X., Yang, Z., Zhuge, H., and Yao, J. (2016). Exploiting heterogeneous scientific literature networks to combat ranking bias: Evidence from the computational linguistics area. Journal of the Association for Information Science and Technology, 67(7), 1679-1702. 10.1002/asi.23463[CrossRef]

Johnsonbaugh R. (1999). Discrete Mathematics, New York: Macmillan Publishing Company.

Karpagam, R., Gopalakrishnan, S., Natarajan, M., and Ramesh Babu, B. (2011). Mapping of nanoscience and nanotechnology research in India: A scientometric analysis, 1990-2009. Scientometrics, 89(2), 501-522. 10.1007/s11192-011-0477-8[CrossRef]

Kleinberg, J. M. (1999). Hubs, authorities, and communities. ACM computing surveys (CSUR), 31(4es), 5. 10.1145/345966.345982[CrossRef]

Konur, O. (2012). The scientometric evaluation of the research on the production ofbioenergyfrom biomass. biomass and Bioenergy, 47, 504-515. 10.1016/j.biombioe.2012.09.047[CrossRef]

Koseoglu, M. A., Sehitoglu, Y., and Craft, J. (2015). Academic foundations of hospitality management research with an emerging country focus: A citation and co-citation analysis. International Journal of Hospitality Management, 45(0), 130-144. 10.1016/j.ijhm.2014.12.004[CrossRef]

Landinez, D., Robledo, S., and Montoya, D. (2019). Executive Function performance in patients with obesity: a systematic review. Psychologia, 15(2), 31-50. 10.1007/s11192-012-0917-0[CrossRef]

Leydesdorff, L. (2013). Statistics for the dynamic analysis of scientometric data: The evolution of the sciences in terms of trajectories and regimes. Scientometrics, 96(3), 731-741. 10.1007/s11192-012-0917-0[CrossRef]

Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(2), 317-324.

Mutschke, P. and Mayr, P. (2014). Science models for search: a study on combining scholarly information retrieval and scientometrics. Scientometrics, 102(3), 2323-2345. 10.1007/s11192-014-1485-2[CrossRef]

Parolo, P. D. B., Kujala, R., Kaski, K., and Kivela, M. (2019). Going beneath the shoulders of giants: tracking the cumulative knowledge spreading in a comprehensive citation network. arXiv preprint arXiv:1908.11089.

Price, D. J. de S. (1963). Little science, big science and beyond. Columbia University Press. New York. 10.7312/pric91844[CrossRef]

Price, D. J. de S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American society for Information Science, 27(5), 292-306. 10.1002/asi.4630270505[CrossRef]

Robledo-Buriticá J., Aguirre-Alfonso, C. A., and Castaño-Zapata, J. (2019). Guía ilustrada de enfermedades en postcosecha de frutas y verduras y sus agentes causantes en Colombia. Bogotá, Colombia: Academia Colombiana de Ciencias Exactas, Físicas y Naturales.

Robledo, S., Osorio, G. and López, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoría de grafos. Revista vínculos, 11(2), 6-16. Retrieved from: https://revistas.udistrital.edu.co/ojs/index.php/vin culos/article/view/9664 [Link]

Sepúlveda, S. and Cravero, A. (2015). Protocol adaptations to conduct systematic literature reviews in software engineering: A chronological study. Ingeniería e Investigación, 35(3), 84-91. 10.15446/ing.investig.v35n3.46616[CrossRef]

Singh, V. K., Uddin, A., and Pinto, D. (2015) Computer science research: the top 100 institutions in India and in the world. Scientometrics 104, 529-553. 10.1007/s11192-015-1612-8[CrossRef]

Vinkler, P. (2011). Application of the distribution of citations among publications in scientometric evaluations. Journal of the American Society for Information Science and Technology, 62(10), 1963-1978.10.1002/asi.21600[CrossRef]

Zuluaga, M., Robledo, S., Osorio-Zuluaga, G. A., Yathe, L., Gonzalez, D., and Taborda, G. (2016). Metabolómica y Pesticidas: Revisión sistemática de literatura usando teoría de grafos para el análisis de referencias. Nova, 13(25), 121-138. 10.22490/24629448.1735[CrossRef]

Valencia-Hernández, D. S., Robledo, S., Pinilla, R., Duque-Méndez. N. D., and Olivar-Tost, G. (2020). SAP Algorithm for Citation Analysis: An improvement to Tree of Science. Ingeniería e Investigación, 40(1), 45-49. 10.15446/ing.investig.v40n1.77718

References

Alulema, F. X. V. and Largo, F. L. (2019). Strategic portfolio of IT projects at universities: A systematic and non-conventional literature review. Ingeniería e Investigación, 39(2). https://doi.org/10.15446/ing.investig.v39n2.72431

Chen, P., Xie, H., Maslov, S. and Redner, S. (2007). Finding scientific gems with Google’s PageRank algorithm. Journal of Informetrics, 1(1), 8-15. https://doi.org/10.1016/j.joi.2006.06.001

Duque, P. and Cervantes-Cervantes, L.S. (2019). Responsabilidad Social Universitaria: una revisión sistemática y análisis bibliométrico. Estudios Gerenciales, 35(153), 451-464. https://doi.org/10.18046/j.estger.2019.153.3389

Fang, H. (2019). A transition stage co-citation criterion for identifying the awakeners of sleeping beauty publications. Scientometrics, 121(1), 307-322. https://doi.org/10.1007/s11192-019-03195-9

Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178(60), 471-479. https://doi.org/10.1126/science.178.4060.471

Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569-72. https://doi.org/10.1073/pnas.0507655102

Hood, W. W. and Wilson, C. S. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52(2), 291-314. https://doi.org/10.1023/A:1017919924342

Ioannidis, J. P. A. (2015). A generalized view of self-citation: Direct, co-author, collaborative, and coercive induced self-citation. Journal of Psychosomatic Research, 78(1), 7-11. https://doi.org/10.1016/j.jpsychores.2014.11.008

Jiang, X., Sun, X., Yang, Z., Zhuge, H. and Yao, J. (2016). Exploiting heterogeneous scientific literature networks to combat ranking bias: Evidence from the computational linguistics area. Journal of the Association for Information Science and Technology, 67(7), 1679-1702. https://doi.org/10.1002/asi.23463

Johnsonbaugh R. (1999). Discrete Mathematics, New York: Macmillan Publishing Company.

Karpagam, R., Gopalakrishnan, S., Natarajan, M., and Ramesh Babu, B. (2011). Mapping of nanoscience and nanotechnology research in India: A scientometric analysis, 1990-2009. Scientometrics, 89(2), 501-522. https://doi.org/10.1007/s11192-011-0477-8

Kleinberg, J. M. (1999). Hubs, authorities, and communities. ACM computing surveys (CSUR), 31(4es), 5. https://doi.org/10.1145/345966.345982

Konur, O. (2012). The scientometric evaluation of the research on the production of bioenergy from biomass. Biomass and Bioenergy, 47, 504-515. https://doi.org/10.1016/j.biombioe.2012.09.047

Köseoğlu, M. A., Sehitoglu, Y. and Craft, J. (2015). Academic foundations of hospitality management research with an emerging country focus: A citation and co-citation analysis. International Journal of Hospitality Management, 45(0), 130-144. https://doi.org/10.1016/j.ijhm.2014.12.004

Landinez, D., Robledo, S., and Montoya, D. (2019). Executive Function performance in patients with obesity: a systematic review. Psychologia, 15(2), 31-50. https://doi.org/10.1007/s11192-012-0917-0

Leydesdorff, L. (2013). Statistics for the dynamic analysis of scientometric data: The evolution of the sciences in terms of trajectories and regimes. Scientometrics, 96(3), 731-741. https://doi.org/10.1007/s11192-012-0917-0

Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(2), 317-324.

Mutschke, P. and Mayr, P. (2014). Science models for search: a study on combining scholarly information retrieval and scientometrics. Scientometrics, 102(3), 2323-2345. https://doi.org/10.1007/s11192-014-1485-2

Parolo, P. D. B., Kujala, R., Kaski, K. and Kivelä, M. (2019). Going beneath the shoulders of giants: tracking the cumulative knowledge spreading in a comprehensive citation network. arXiv preprint arXiv:1908.11089.

Price, D. J. de S. (1963). Little science, big science... and beyond. Columbia University Press. New York. https://doi.org/10.7312/pric91844

Price, D. J. de S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American society for Information Science, 27(5), 292-306. https://doi.org/10.1002/asi.4630270505

Robledo-Buriticá J., Aguirre-Alfonso, C.A. and Castaño-Zapata, J. (2019). Guía ilustrada de enfermedades en postcosecha de frutas y verduras y sus agentes causantes en Colombia. Bogotá, Colombia: Academia Colombiana de Ciencias Exactas, Físicas y Naturales.

Robledo, S., Osorio, G. and López, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoría de grafos. Revista vínculos, 11(2), 6-16. Retrieved from: https://revistas.udistrital.edu.co/ojs/index.php/vinculos/article/view/9664

Sepúlveda, S. and Cravero, A. (2015). Protocol adaptations to conduct systematic literature reviews in software engineering: A chronological study. Ingeniería e Investigación, 35(3), 84-91. https://doi.org/10.15446/ing.investig.v35n3.46616

Singh, V.K., Uddin, A. & Pinto, D. (2015) Computer science research: the top 100 institutions in India and in the world. Scientometrics 104, 529–553. https://doi.org/10.1007/s11192-015-1612-8

Vinkler, P. (2011). Application of the distribution of citations among publications in scientometric evaluations. Journal of the American Society for Information Science and Technology, 62(10), 1963-1978. https://doi.org/10.1002/asi.21600

Zuluaga, M., Robledo, S., Osorio-Zuluaga, G. A., Yathe, L., Gonzalez, D. and Taborda, G. (2016). Metabolómica y Pesticidas: Revisión sistemática de literatura usando teoría de grafos para el análisis de referencias. Nova, 13(25), 121–138. https://doi.org/10.22490/24629448.1735

How to Cite

APA

Valencia-Hernandez, D. S., Robledo, S., Pinilla, R., Duque-Méndez, N. D. and Olivar-Tost, G. (2020). SAP Algorithm for Citation Analysis: An improvement to Tree of Science. Ingeniería e Investigación, 40(1), 45–49. https://doi.org/10.15446/ing.investig.v40n1.77718

ACM

[1]
Valencia-Hernandez, D.S., Robledo, S., Pinilla, R., Duque-Méndez, N.D. and Olivar-Tost, G. 2020. SAP Algorithm for Citation Analysis: An improvement to Tree of Science. Ingeniería e Investigación. 40, 1 (Jan. 2020), 45–49. DOI:https://doi.org/10.15446/ing.investig.v40n1.77718.

ACS

(1)
Valencia-Hernandez, D. S.; Robledo, S.; Pinilla, R.; Duque-Méndez, N. D.; Olivar-Tost, G. SAP Algorithm for Citation Analysis: An improvement to Tree of Science. Ing. Inv. 2020, 40, 45-49.

ABNT

VALENCIA-HERNANDEZ, D. S.; ROBLEDO, S.; PINILLA, R.; DUQUE-MÉNDEZ, N. D.; OLIVAR-TOST, G. SAP Algorithm for Citation Analysis: An improvement to Tree of Science. Ingeniería e Investigación, [S. l.], v. 40, n. 1, p. 45–49, 2020. DOI: 10.15446/ing.investig.v40n1.77718. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/77718. Acesso em: 23 jan. 2025.

Chicago

Valencia-Hernandez, Daniel Stiven, Sebastian Robledo, Ricardo Pinilla, Nestor Darío Duque-Méndez, and Gerard Olivar-Tost. 2020. “SAP Algorithm for Citation Analysis: An improvement to Tree of Science”. Ingeniería E Investigación 40 (1):45-49. https://doi.org/10.15446/ing.investig.v40n1.77718.

Harvard

Valencia-Hernandez, D. S., Robledo, S., Pinilla, R., Duque-Méndez, N. D. and Olivar-Tost, G. (2020) “SAP Algorithm for Citation Analysis: An improvement to Tree of Science”, Ingeniería e Investigación, 40(1), pp. 45–49. doi: 10.15446/ing.investig.v40n1.77718.

IEEE

[1]
D. S. Valencia-Hernandez, S. Robledo, R. Pinilla, N. D. Duque-Méndez, and G. Olivar-Tost, “SAP Algorithm for Citation Analysis: An improvement to Tree of Science”, Ing. Inv., vol. 40, no. 1, pp. 45–49, Jan. 2020.

MLA

Valencia-Hernandez, D. S., S. Robledo, R. Pinilla, N. D. Duque-Méndez, and G. Olivar-Tost. “SAP Algorithm for Citation Analysis: An improvement to Tree of Science”. Ingeniería e Investigación, vol. 40, no. 1, Jan. 2020, pp. 45-49, doi:10.15446/ing.investig.v40n1.77718.

Turabian

Valencia-Hernandez, Daniel Stiven, Sebastian Robledo, Ricardo Pinilla, Nestor Darío Duque-Méndez, and Gerard Olivar-Tost. “SAP Algorithm for Citation Analysis: An improvement to Tree of Science”. Ingeniería e Investigación 40, no. 1 (January 1, 2020): 45–49. Accessed January 23, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/77718.

Vancouver

1.
Valencia-Hernandez DS, Robledo S, Pinilla R, Duque-Méndez ND, Olivar-Tost G. SAP Algorithm for Citation Analysis: An improvement to Tree of Science. Ing. Inv. [Internet]. 2020 Jan. 1 [cited 2025 Jan. 23];40(1):45-9. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/77718

Download Citation

CrossRef Cited-by

CrossRef citations45

1. Christian Felipe Valderrama, Juan Pablo Herrera, Paola Villegas-Guzman, Javier Silva-Agredo. (2023). Análisis de biochar y metales: una revisión sistemática y análisis bibliométrico. Ingeniería y Competitividad, 25(3) https://doi.org/10.25100/iyc.v25i3.12505.

2. Maria-Isabel Gerrero-Molina, Yasmin-Alexandra Vásquez-Suárez, Diana-Mercedes Valdés-Mosquera. (2024). Smart, Green, and Sustainable: Unveiling Technological Trajectories in Maritime Port Operations. IEEE Access, 12, p.47713. https://doi.org/10.1109/ACCESS.2024.3376431.

3. Yeraldine González Marín, Mauricio Mejía Manrique. (2024). Conflicto armado y educación: una revisión usando Tree of Science. Ciencia y Academia, (5) https://doi.org/10.21501/2744838X.4513.

4. Andres M. Grisales A., Sebastian Robledo, Martha Zuluaga. (2023). Topic Modeling: Perspectives From a Literature Review. IEEE Access, 11, p.4066. https://doi.org/10.1109/ACCESS.2022.3232939.

5. Oscar Hoyos, Mauricio Castro Duque, Natalia Toro León, Damiand Trejos Salazar, Luz Alexandra Montoya-Restrepo, Ivan Alonso Montoya-Restrepo, Pedro Duque. (2023). Gobierno corporativo y desarrollo sostenible: un análisis bibliométrico . Revista CEA, 9(19), p.e2190. https://doi.org/10.22430/24223182.2190.

6. Juan Diego González Prieto, Natalia Mejía Franco. (2024). Avances investigativos de la integración de la educación financiera en los niveles superiores de educación: una revisión bibliométrica. Academia y Virtualidad, 17(2), p.33. https://doi.org/10.18359/ravi.6907.

7. Pablo Andrés Erazo Muñoz, Martha Isabel Riaño Casallas. (2021). Relación entre felicidad en el trabajo y desempeño laboral: análisis bibliométrico, evolución y tendencias. Revista Virtual Universidad Católica del Norte, (64), p.241. https://doi.org/10.35575/rvucn.n64a10.

8. Eider Leandro Rodríguez Valencia. (2023). Ética ambiental: origen, evolución y tendencias de investigación . Luna Azul, (57) https://doi.org/10.17151/luaz.2023.57.10.

9. Hannia Gonzalez-Urango, Enrique Mu, Anna Ujwary-Gil, Anna Florek-Paszkowska. (2024). Analytic network process in economics, finance and management: Contingency factors, current trends and further research. Expert Systems with Applications, 237, p.121415. https://doi.org/10.1016/j.eswa.2023.121415.

10. Juan Pablo Herrera Cerquera, Claudia Parra Cortés, Evelin Zapata Ríos, Claudia Tatiana Aroca Pulido, Arsened Vargas Guarín. (2024). Synergy of Pollinators and Flower Strips: A Systematic Review and Bibliometric Analysis of Global Research Trends. Land Degradation & Development, https://doi.org/10.1002/ldr.5436.

11. Iván F. Macías-Quiroga, Paula A. Henao-Aguirre, Alexander Marín-Flórez, Sandra M. Arredondo-López, Nancy R. Sanabria-González. (2021). Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends. Environmental Science and Pollution Research, 28(19), p.23791. https://doi.org/10.1007/s11356-020-11333-7.

12. Pedro Duque, Oscar Eduardo Meza, David Giraldo, Karol Barreto. (2021). Economía Social y Economía Solidaria: un análisis bibliométrico y revisión de literatura. REVESCO. Revista de Estudios Cooperativos, 138, p.e75566. https://doi.org/10.5209/reve.75566.

13. Sebastian Robledo, Martha Zuluaga, Luis-Alexander Valencia-Hernandez, Oscar Arbelaez-Echeverri Arbelaez-Echeverri, Pedro Duque, Juan-David Alzate-Cardona. (2022). Tree of Science with Scopus: A Shiny Application. Issues in Science and Technology Librarianship, (100) https://doi.org/10.29173/istl2698.

14. Edward Andrés Benavides-Sánchez, Camilo Andrés Castro-Ruíz, Miguel Angel Brand Narváez. (2023). El emprendimiento de base tecnológica y su punto de encuentro con la convergencia tecnocientífica: una revisión a partir del algoritmo Tree of Science. Revista CEA, 9(19), p.e2153. https://doi.org/10.22430/24223182.2153.

15. Jose David Giraldo Castellanos, Pedro Luis Duque Hurtado, Lorena Barahona, Estefanía Peña. (2022). Marco de referencia y tendencias de investigación de economía colaborativa. Revista En-contexto, 10(16), p.267. https://doi.org/10.53995/23463279.1159.

16. Angelo J. Soto-Vergel, Juan C. Velez, Rene Amaya-Mier, Mauricio Pardo. (2023). Transforming ground disaster response: Recent technological advances, challenges, and future trends for rapid and accurate real-world applications of survivor detection. International Journal of Disaster Risk Reduction, 98, p.104094. https://doi.org/10.1016/j.ijdrr.2023.104094.

17. Oscar Hoyos, Pedro Duque, Daniel García, Sebastian Giraldo. (2022). Producción científica sobre economía verde y sostenibilidad. Revista Facultad de Ciencias Económicas, 30(2), p.77. https://doi.org/10.18359/rfce.5846.

18. Andrés Mauricio Grisales-Aguirre, Carlos Julio Figueroa-Vallejo. (2022). Modelado de tópicos aplicado al análisis del papel del aprendizaje automático en revisiones sistemáticas. Revista de Investigación, Desarrollo e Innovación, 12(2), p.279. https://doi.org/10.19053/20278306.v12.n2.2022.15271.

19. Sebastian Robledo-Giraldo, Jose Gregorio Figueroa-Camargo, Martha Viviana Zuluaga-Rojas, Sol Beatriz Vélez-Escobar, Pedro Luis Duque- Hurtado. (2023). Mapping, evolution, and application trends in co-citation analysis: a scientometric approach. Revista de Investigación, Desarrollo e Innovación, 13(1), p.201. https://doi.org/10.19053/20278306.v13.n1.2023.16070.

20. Pablo Andrés Erazo Muñoz, Karen Dayana Corredor Reyes, Lauren Melissa Corrales Otalvaro. (2023). Motivación laboral: análisis bibliométrico y revisión de tendencias. Revista Perspectiva Empresarial, 10(1), p.132. https://doi.org/10.16967/23898186.822.

21. Christian felipe Valderrama, Alexandra Ceron, Juan Pablo Herrera, Leidy Diaz. (2023). Análisis de la agroforestería urbana: una revisión sistemática y análisis bibliométrico. Colombia forestal, 26(2), p.77. https://doi.org/10.14483/2256201X.19981.

22. Yasaldez Loaiza, Mónica Patiño, Olga Umaña, Pedro Duque. (2023). What is New in Metacognition Research? Answers from Current Literature. Educación y Educadores, 25(3), p.1. https://doi.org/10.5294/edu.2022.25.3.5.

23. Sebastian Robledo, Andrés Mauricio Grisales Aguirre, Mathew Hughes, Fabian Eggers. (2023). “Hasta la vista, baby” – will machine learning terminate human literature reviews in entrepreneurship?. Journal of Small Business Management, 61(3), p.1314. https://doi.org/10.1080/00472778.2021.1955125.

24. Carlos Andres Diaz Restrepo, Monica Patiño, Pedro Duque, Luis Salvador Cervantes Cervantes, Andrea Franco Rivera. (2023). Rendimiento financiero en pequeñas y medianas empresas (pymes): un análisis bibliométrico de la producción científica. Apuntes del Cenes, 42(75) https://doi.org/10.19053/01203053.v42.n75.2023.14714.

25. Ana María Barrera Rodríguez, Edison Jair Duque Oliva, Jaime Andrés Vieira Salazar. (2023). Actor engagement: origin, evolution and trends. Journal of Business & Industrial Marketing, 38(7), p.1479. https://doi.org/10.1108/JBIM-11-2021-0512.

26. María Teresa Manjarres, Diana Paola Mahecha Duarte, Jorge Navarro-Obeid, Maria Laura Vergara Álvarez, Isneila Martinez, Lorena Cudris-Torres, Juan Hernández-Lalinde, Valmore Bermúdez. (2023). A bibliometric analysis and literature review on emotional skills. Frontiers in Psychology, 14 https://doi.org/10.3389/fpsyg.2023.1040110.

27. Martha del Socorro Alzate Cárdenas, Michel Andrés Otálora Montoya, Héctor Salgado Hernández. (2023). Empresas sociales de países en desarrollo: . ÁNFORA, 30(55), p.42. https://doi.org/10.30854/anf.v30.n55.2023.921.

28. Carlos Andrés Dodino-Gutiérrez, Juan Manuel Santiago-Galvis, Roger Alberto Rabelo-Florez, Juan Guillermo Cubillos-Hinojosa. (2023). Application of molecular techniques in soil microbiology for the identification of bacteria with agricultural potential: a review and bibliometric analysis. Revista Colombiana de Ciencias Hortícolas, 17(2) https://doi.org/10.17584/rcch.2023v17i2.16096.

29. Sebastian Robledo, Martha Zuluaga, Luis-Alexander Valencia-Hernandez, Oscar Arbelaez-Echeverri Arbelaez-Echeverri, Pedro Duque, Juan-David Alzate-Cardona. (2022). Tree of Science with Scopus: A Shiny Application. Issues in Science and Technology Librarianship, (100) https://doi.org/10.29173/istl2698.

30. Reynaldo Gustavo Rivera, Carlos Orellana Fantoni, Eunice Gálvez, Priscilla Jimenez-Pazmino, Carmen Karina Vaca Ruiz, Arturo Fitz Herbert. (2024). Using scientometrics to mapping Latin American research networks in emerging fields: the field networking index. Scientometrics, 129(4), p.2309. https://doi.org/10.1007/s11192-024-04970-z.

31. Julio Alfonso González-Mendoza, Maria del Mar Calderon-Contreras. (2022). Teletrabajo y sus impactos: una revisión y análisis bibliométrico . Aibi revista de investigación, administración e ingeniería, 10(2) https://doi.org/10.15649/2346030X.2437.

32. Pedro Duque-Hurtado, Adrián Toro-Cardona, Dahiana Ramírez-Carvajal, Martin Eugenio Carvajal-Henao. (2020). Marketing viral: Aplicación y tendencias. Clío América, 14(27), p.454. https://doi.org/10.21676/23897848.3759.

33. Ana Milena Morales Sossa, Adriana Paola Bendek Rico, Edith Grande Triviño, Julian Ricardo Urrea. (2023). ESL strategies: bibliometric analysis through scientific mapping in WoS and Scopus. Actualidades Pedagógicas, (81), p.e1663. https://doi.org/10.19052/ap.vol1.iss81.4.

34. Hugo Guerrero-Sierra, Pedro Duque, César Niño. (2024). Analysis of worldwide research on clientelism: Origins, evolution, and trends. Social Science Information, 63(3), p.319. https://doi.org/10.1177/05390184241268381.

35. Fausto Orlando Maussa Pérez, Juan Manuel Montes Hincapié. (2023). Patrimonio Cultural Inmaterial y Ecosistemas Creativos: una revisión de literatura. Revista Finanzas y Política Económica, 15(2), p.517. https://doi.org/10.14718/revfinanzpolitecon.v15.n2.2023.9.

36. Rasine Ravelo Méndez, Milceth Mendoza Gómez. (2023). Competitividad Territorial y Desarrollo Local. Equidad y Desarrollo, https://doi.org/10.19052/eq.vol1.iss42.9.

37. Paola Marcela Alzate-Montoya, Valentina Giraldo-Ospina, Pedro Duque-Hurtado. (2024). Trends and strategies in sustainable maritime transport: insights from global research. Revista de Investigación, Desarrollo e Innovación, 14(2), p.43. https://doi.org/10.19053/uptc.20278306.v14.n2.2024.17922.

38. Beatriz Ramírez Aristizábal, Paula Andrea Restrepo García. (2024). Educación superior inclusiva. . ÁNFORA, 31(57), p.327. https://doi.org/10.30854/anf.v31.n57.2024.1059.

39. Carlos Andrés Diaz Restrepo, Oscar Hernán Hoyos Llanos, Daniel Esteban Arismendy Quintero, Pedro Luis Duque Hurtado. (2023). Educación Financiera en la población joven: una revisión y análisis bibliométrico. Revista Colombiana de Educación, (89), p.148. https://doi.org/10.17227/rce.num89-14201.

40. Martha Zuluaga, Sebastian Robledo, Oscar Arbelaez-Echeverri, German A. Osorio-Zuluaga, Nestor Duque-Méndez. (2022). Tree of Science - ToS: A Web-Based Tool for Scientific Literature Recommendation. Search Less, Research More!. Issues in Science and Technology Librarianship, (100) https://doi.org/10.29173/istl2696.

41. Olga Lucia Hurtado-Cardona, Iván A. Montoya-Restrepo, Luz Alexandra Montoya-Restrepo . (2024). Foundations, mapping and trends of the DART Model for value co-creation: A scientometric analysis. Kepes, 20(28), p.137. https://doi.org/10.17151/kepes.2023.20.28.6.

42. Christian Valderrama, Leidy Diaz, Alexandra Ceron. (2024). Trends of the ecological footprint and urban development: A systematic and bibliometric review. Ecological Frontiers, 44(5), p.865. https://doi.org/10.1016/j.ecofro.2024.01.007.

43. Camilo M. Botero, Celene B. Milanes, Sebastian Robledo. (2023). 50 years of the Coastal Zone Management Act: The bibliometric influence of the first coastal management law on the world. Marine Policy, 150, p.105548. https://doi.org/10.1016/j.marpol.2023.105548.

44. Pedro Luis Duque Hurtado, José David Giraldo Castellanos, Iván Darío Osorio Gómez. (2023). Análisis bibliométrico de la investigación en big data y cadena de suministro. Revista CEA, 9(20), p.e2448. https://doi.org/10.22430/24223182.2448.

45. Paola Alzate, Gustavo A. Isaza, Eliana M. Toro, Jorge A. Jaramillo-Garzón, Sara Hernandez, Isabella Jurado, Diana Hernandez. (2024). Operational efficiency and sustainability in smart ports: a comprehensive review. Marine Systems & Ocean Technology, 19(1-2), p.120. https://doi.org/10.1007/s40868-024-00142-z.

Dimensions

PlumX

Article abstract page views

4153

Downloads

Download data is not yet available.