Published

2024-01-01

A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images

Una nueva metodología basada en inteligencia artificial para estimar la resistencia a la compresión del hormigón a partir de imágenes superficiales

DOI:

https://doi.org/10.15446/ing.investig.99526

Keywords:

reinforced concrete, building, digital image processing, intelligent system, compressive strength, experimentation (en)
edificios de hormigón armado, procesamiento de imágenes digitales, sistema inteligente, resistencia a la compresión, experimentación (es)

Downloads

Authors

This study used digital image processing and an artificial neural network (ANN) to determine the compressive strength of concrete in reinforced concrete buildings without coring. First, 32 concrete samples were produced in the laboratory, with different water-to-cement ratios, aggregate types, amounts of binder, compression values applied to fresh concrete, and amounts of additive. Next, the locations of 192 cores were visualized, and the compressive strengths of their corresponding core samples were matched with the surface images of the concrete, which were then digitized by image processing. The digitized images were the input layer, and the training and testing procedures were performed using the ANN as an output layer. After testing, the model was validated in existing reinforced concrete buildings. For the verification process, 20 cores taken from randomly selected concrete buildings were used. Although the results obtained from the samples produced in the laboratory were satisfactory, the success rate of the samples taken from the field was limited. Finally, the findings of this study are compared against the literature on this subject, especially from the last two decades.

En este estudio se utilizó procesamiento de imágenes digitales y una red neuronal artificial (ANN) para determinar la resistencia a la compresión del hormigón en edificios de hormigón armado sin tomar núcleos. Primero, se generaron 32 muestras de concreto en el laboratorio con diferentes proporciones de agua a cemento, tipos de agregado, cantidades de aglutinante, valores de compresión aplicada al concreto fresco y cantidades de aditivo. A continuación, se visualizaron las ubicaciones de 192 núcleos, y las resistencias a la compresión de sus correspondientes muestras se compararon con las imágenes de la superficie del hormigón, que se digitalizaron mediante procesamiento de imágenes. Si las imágenes digitalizadas fueron la capa de entrada, y los procedimientos de entrenamiento y prueba se realizaron utilizando la ANN como capa de salida. Después de las pruebas, el modelo se validó en edificios reales de hormigón armado. Para el proceso de verificación, se utilizaron 20 núcleos tomados de edificios de hormigón seleccionados al azar. Si bien los resultados obtenidos de las muestras producidas en el laboratorio fueron satisfactorios, el porcentaje de éxito de las muestras tomadas en campo fue limitado. Por último, se comparan los hallazgos del estudio con la literatura sobre este tema, especialmente de las últimas dos décadas.

References

ACI 318-19 (2018). Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, https://www.usb.ac.ir/FileStaff/5526_2020-1-25-11-12-7.pdf.

ASTM C42 / C42M (2016). Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete. 2016, https://www.astm.org/.

Bingol, S., Cavdar, A. (2016). A new nomogram proposal to determine concrete compressive strength by combined nondestructive testing methods. Research in Nondestructive Evaluation 29(1):1-17, https://www.tandfonline.com/doi/abs/10.1080/09349847.2016.1195466.

Bogasi J.A., Gomes, M.G., Gomes, A. (2013). Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method. Ultrasonics 53: 962-972, https://pubmed.ncbi.nlm.nih.gov/23351273/. DOI: https://doi.org/10.1016/j.ultras.2012.12.012

Breysse, D. (2012). Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods. Constr. Build. Mater. 33:139-163, https://doi.org/10.1016/j.conbuildmat.2011.12.103.

Chang, C.W., Chen, P.H., Lien, H.S. (2009). Evaluation of residual stress in pre-stressed concrete material by digital image processing photoelastic coating and hole drilling method. Measurement 42(4):552-558, https://doi.org/10.1016/j.measurement.2008.10.004

Dogan, G., Arslan, M.H., Ceylan, M. (2015). Statistical feature extraction based on an ANN approach for estimating the compressive strength of concrete. Neural Network World, 25(3):301-318, http://www.nnw.cz/doi/2015/NNW.2015.25.016.pdf. DOI: https://doi.org/10.14311/NNW.2015.25.016

Dogan, G., Arslan, M.H., Ceylan, M. (2015). Statistical feature extraction based on an ANN approach (2017) Concrete compressive strength detection using image processing based new test method. Measurement 109:137-148, https://doi.org/10.1016/j.measurement.2017.05.051.

Easton, R.L.Jr. (2010). Fundamentals of Digital Image Processing, https://www.cis.rit.edu/class/simg361/Notes_11222010.pdf

Ferreira, R.M., Jalali, S., (2010). NDT measurements for the prediction of 28-day compressive strength. NDT&E Int. 43:55-61, https://doi.org/10.1016/j.ndteint.2009.09.003.

Gencturk, B., Hossain, K., Kapadia, A., Labib, E., Mo, Y.L. (2014). Use of digital image correlation technique in full-scale testing of prestressed concrete structures. Measurement 47:505-515, http://dx.doi.org/10.1016/j.measurement.2013.09.018.

Gonzalez, R.C., Eddins, S.L., Woods, R.E. (2004). Digital image processing using MATLAB. Vol. 624. Upper Saddle River, New Jersey: Pearson-Prentice-Hall, 2004.

https://library.modot.mo.gov/rdt/reports/ri98006/or07004.pdf

Inel, M., Bilgin, H., Ozmen, H.B. (2008). Seismic capacity evaluation of school buildings in Turkey. Structures & Buildings 161(3):147-159, https://doi.org/10.12989/sem.2008.30.5.535.

Jang, Y., Ahn, Y., Kim, H.Y. (2019). Estimating Compressive Strength of Concrete Using Deep Convolutional Neural Net-works with Digital Microscope Images. Journal of Computing in Civil Engineering 33(3), https://ascelibrary.org/doi/10.1061/%28ASCE%29CP.1943-5487.0000837.

Lopez, M., Kahn, L.F., Kurtis, K.E. (2009). Characterization of elastic and time-dependent deformations in high performance light weight concrete by image analysis. Cem. Concr. Res. 39 (2009) 610–619, http://dx.doi.org/10.1016/j.cemconres.2009.03.015.

Naderpour, H., Rafiean, A.H., Fakharian, P. (2018). Compressive strength prediction of environmentally friendly concrete using artificial neural networks. Journal of Building Engineering 16: 213-219, https://doi.org/10.1016/j.jobe.2018.01.007.

Sbartai, A.M., Breysse, D., Larget, M., Balayssac, J.P. (2012). Combining NDT techniques for improved evaluation of concrete properties. Cement Concr. Compos. 34 (2012) 725–733, https://doi.org/10.1016/j.cemconcomp.2012.03.005.

Thapa, S., Halder, L. and Dutta, S.C. (2019). Evaluation of concrete made with stone and brick aggregate using non-destructive testing. Munucipal Engineering, 2019, https://doi.org/10.1680/jmuen.18.00030.

TS EN 197-1 (2012). Cement- Part 1: Compositions and conformity criteria for common cements, Ankara, Turkey.

TS EN 206- (2002). Concrete- Part 1: Specification, performance, production and conformity, Ankara, Turkey.

TS EN 12504-1 (2010). Testing concrete in structures - Part 1: Cored specimens -taking, examining and testing in compression, Ankara, Turkey.

TS EN 13791 (2010). Assessment of in-situ compressive strength in structures and precast concrete components, Ankara, Turkey.

TS-500 (2000). Turkish Standards, Design and Construction Rules of Concrete, Turkish Standards Institute, Ankara, Turkey.

Zhao, S., Sun, C. (2019). Recycled aggregate concrete perfor-mance analysis based on digital image processing. Multimedia Tools and Application, 2019, https://ur.booksc.eu/book/74472607/c9c999.

How to Cite

APA

Doğan, G., Özkiş, A. & Arslan, M. H. (2024). A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images. Ingeniería e Investigación, 44(1), e99526. https://doi.org/10.15446/ing.investig.99526

ACM

[1]
Doğan, G., Özkiş, A. and Arslan, M.H. 2024. A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images. Ingeniería e Investigación. 44, 1 (Jan. 2024), e99526. DOI:https://doi.org/10.15446/ing.investig.99526.

ACS

(1)
Doğan, G.; Özkiş, A.; Arslan, M. H. A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images. Ing. Inv. 2024, 44, e99526.

ABNT

DOĞAN, G.; ÖZKIŞ, A.; ARSLAN, M. H. A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images. Ingeniería e Investigación, [S. l.], v. 44, n. 1, p. e99526, 2024. DOI: 10.15446/ing.investig.99526. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/99526. Acesso em: 26 dec. 2025.

Chicago

Doğan, Gamze, Ahmet Özkiş, and Musa Hakan Arslan. 2024. “A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images”. Ingeniería E Investigación 44 (1):e99526. https://doi.org/10.15446/ing.investig.99526.

Harvard

Doğan, G., Özkiş, A. and Arslan, M. H. (2024) “A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images”, Ingeniería e Investigación, 44(1), p. e99526. doi: 10.15446/ing.investig.99526.

IEEE

[1]
G. Doğan, A. Özkiş, and M. H. Arslan, “A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images”, Ing. Inv., vol. 44, no. 1, p. e99526, Jan. 2024.

MLA

Doğan, G., A. Özkiş, and M. H. Arslan. “A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images”. Ingeniería e Investigación, vol. 44, no. 1, Jan. 2024, p. e99526, doi:10.15446/ing.investig.99526.

Turabian

Doğan, Gamze, Ahmet Özkiş, and Musa Hakan Arslan. “A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images”. Ingeniería e Investigación 44, no. 1 (January 2, 2024): e99526. Accessed December 26, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/99526.

Vancouver

1.
Doğan G, Özkiş A, Arslan MH. A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images. Ing. Inv. [Internet]. 2024 Jan. 2 [cited 2025 Dec. 26];44(1):e99526. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/99526

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Altug BAKIRCI, Tayfun SIGIRTMAC, Mustafa Cemal CAKIR, Agah UGUZ. (2025). Investigating the Effects of Cutting Methods for Aluminum Metallic Foams. Ingeniería e Investigación, 44(3), p.110998. https://doi.org/10.15446/ing.investig.110998.

Dimensions

PlumX

Article abstract page views

629

Downloads

Download data is not yet available.