Publicado
Trends in Electrochromic Materials: Industrial Perspective in Colombia
Tendencias en materiales electrocrómicos: perspectiva industrial en Colombia
DOI:
https://doi.org/10.15446/ing.investig.101173Palabras clave:
electrochromic devices, eco-energy technologies, resources assessment (en)dispositivos electrocrómicos, tecnologías eco-energéticas, evaluación de recursos (es)
Descargas
Dissertations across various sectors (industrial, governmental, and research) advocate for the manufacture of products with innovative scientific and technological developments as a driving force to generate added value and, in a dual approach, respond to the expectations of domestic consumers and encourage exports in the country. This analytical and descriptive bibliometric review on electrochromism, a property of some materials that allows them to reversibly change their optical transmittance via the repeated and consecutive intercalation and extraction of electric charges under a small alternating polarity electric potential, contributes by describing the fundamentals, recent research advances, and the feasibility of national industrial application, given the existence of mineral resources, chemical inputs, companies, and qualified human talent at different levels of sectors related to chromic devices and energy storage.
Disertaciones en diferentes sectores (industriales, gubernamentales y de investigación) abogan por la fabricación de productos con desarrollos científicos y tecnológicos innovadores como un motor para generar valor agregado y, en un enfoque dual, responder a las expectativas de los consumidores nacionales y fomentar las exportaciones en el país. Esta revisión bibliométrica de carácter analítico y descriptivo sobre el electrocromismo, una propiedad de algunos materiales que les permite cambiar de manera reversible su transmitancia óptica a través de la intercalación y extracción consecutiva y repetida de cargas eléctricas bajo un pequeño potencial eléctrico de polaridad alterna, hace aportes en la descripción de los fundamentos, los avances recientes en la investigación y la viabilidad de la aplicación industrial nacional, dada la existencia de recursos minerales, insumos químicos, empresas y talento humano calificado en diferentes niveles de sectores relacionados con dispositivos crómicos y almacenamiento de energía.
Referencias
Atak, G., and Coşkun, Ö. D. (2019). Effects of anodic layer thickness on overall performance of all-solid-state electrochromic device. Solid State Ionics, 341, 115045. https://doi.org/10.1016/j.ssi.2019.115045 DOI: https://doi.org/10.1016/j.ssi.2019.115045
Atak, G., Bayrak Pehlivan, İ., Montero, J., Primetzhofer, D., Granqvist, C., G., and Niklasson, G. A. (2020). Electrochromism of nitrogen-doped tungsten oxide thin films. Materials Today Proceedings, 33(6), 2434-2439. https://doi.org/10.1016/j.matpr.2020.01.332 DOI: https://doi.org/10.1016/j.matpr.2020.01.332
Barile, C. J. Slotcavage, D. J. Hou, J. Strand, M. T. Hernandez, T. S., and McGehee, M. D. (2017). Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule, 1(1), 133-145, https://doi.org/10.1016/j.joule.2017.06.001 DOI: https://doi.org/10.1016/j.joule.2017.06.001
Barus, D. A., Sebayang, K., Ginting, J., and Ginting, R. T. (2018). Effect of chemical treatment on conducting polymer for flexible smart window application. Journal of Physics: Conference Series, 1116(3), 4-9. https://doi.org/10.1088/1742-6596/1116/3/032006 DOI: https://doi.org/10.1088/1742-6596/1116/3/032006
Bayrak Pehlivan, İ., Atak, G., Niklasson, G. A., Stolt, L., Edoff, M., and Edvinsson, T. (2021). Electrochromic solar water splitting using a cathodic WO3 electrocatalyst, Nano Energy, 81, 105620. https://doi.org/10.1016/j.nanoen.2020.105620 DOI: https://doi.org/10.1016/j.nanoen.2020.105620
Begum, A. N., Dhachanamoorthi, N., Saravanan, M. E. R., Jayamurugan, P., Manoharan, D., and Ponnuswamy, V. (2013). Influence of annealing effects on polyaniline for good microstructural modification. Optik, 124(3), 238-242. https://doi.org/10.1016/j.ijleo.2011.11.096 DOI: https://doi.org/10.1016/j.ijleo.2011.11.096
Besnardiere J. (2019). Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO 3. Nature Communications, 10(1), 1-9. https://doi.org/10.1038/s41467-018-07774-x DOI: https://doi.org/10.1038/s41467-018-07774-x
Brooke, R., Edberg, J., Iandolo, D., Berggren, M., Crispin, X., and Engquist, I. (2018). Controlling the electrochromic properties of conductive polymers using UV-light. Journal of Materials Chemistry C, 6, 4663-4670. https://doi.org/10.1039/c7tc05833k DOI: https://doi.org/10.1039/C7TC05833K
Bulja, S. (2017). Tuneable dielectric and optical characteristics of tailor-made inorganic electro-chromic materials. Nature Scientific Reports, 7, 3-10. https://doi.org/10.1038/s41598-017-13941-9 DOI: https://doi.org/10.1038/s41598-017-13941-9
Chang, X. (2018). Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline. Applied Surface Science, 441, 105-112. https://doi.org/10.1016/j.apsusc.2018.02.003 DOI: https://doi.org/10.1016/j.apsusc.2018.02.003
Chen, C. (2020). High-performance embedded nickel grid electrodes for fast-response and bendable all-solid PEDOT: PSS electrochromic devices. Organic Electronics, 77, 105506. https://doi.org/10.1016/j.orgel.2019.105506 DOI: https://doi.org/10.1016/j.orgel.2019.105506
Chen, X. (2020). Bio-inspired flexible vibration visualization sensor based on piezo-electrochromic effect. Journal of Materiomics, 6(4), 643-650. https://doi.org/10.1016/j.jmat.2020.06.002 DOI: https://doi.org/10.1016/j.jmat.2020.06.002
Chen, P. W., Te-Chang, C., Ko, T. F., Hsu, S. C., Li, K. D., and Wu, J. Y. (2020). Fast response of complementary electrochromic device based on WO3/NiO electrodes. Nature Scientific Reports, 10, 1-12, https://doi.org/10.1038/s41598-020-65191-x DOI: https://doi.org/10.1038/s41598-020-65191-x
Choudhary, R. B., Ansari, S., and Purty, B. (2020). Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review. Journal of Energy Storage, 29, 101302. https://doi.org/10.1016/j.est.2020.101302 DOI: https://doi.org/10.1016/j.est.2020.101302
Dalavi, D. S., Bhosale, A. K., Desai, R. S., and Patil, P. S. (2020). Energy efficient electrochromic smart windows based on highly stable CeO2-V2O5 optically passive counter electrode. Materials Today: Proceedings, 43, 4, 2702-2706. https://doi.org/10.1016/j.matpr.2020.06.146 DOI: https://doi.org/10.1016/j.matpr.2020.06.146
DANE (2020a). Boletín técnico PIB IV trimestre 2019. https://www.dane.gov.co/files/investigaciones/boletines/pib/bol_PIB_IVtrim19_producion_y_gasto.pdf
DANE (2020b). Boletín técnico pobreza monetaria en Colombia año 2019. https://www.dane.gov.co/files/investigaciones/condiciones_vida/pobreza/2019/Boletin-pobreza-monetaria_2019.pdf
De Ribamar-Martins-Neto, J., Torresi, R. M., and Cordoba De Torresi, S. I. (2016). Electrochromic behavior of WO3 nanoplate thin films in acid aqueous solution and a protic ionic liquid. Journal of Electroanalytical Chemistry, 765, 111-117. https://doi.org/10.1016/j.jelechem.2015.08.032 DOI: https://doi.org/10.1016/j.jelechem.2015.08.032
Deshmukh, M. A., Gicevicius, M., Ramanaviciene, A., Shirsat, M. D., Viter, R., and Ramanavicius, A. (2017). Hybrid electrochemical/electrochromic Cu(II) ion sensor prototype based on PANI/ITO-electrode. Sensors and Actuators B: Chemical, 248(II), 527-535. https://doi.org/10.1016/j.snb.2017.03.167 DOI: https://doi.org/10.1016/j.snb.2017.03.167
Dias, O. A. T., Konar, S., Leão, A. L., and Sain, M. (2019). Flexible electrically conductive films based on nanofibrillated cellulose and polythiophene prepared via oxidative polymerization. Carbohydrate Polymers, 220, 79-85. https://doi.org/10.1016/j.carbpol.2019.05.057 DOI: https://doi.org/10.1016/j.carbpol.2019.05.057
Díaz-Sánchez, J., Roquero, P., Hernández-Alcántara, J. M., Rosas-Aburto, A., Vázquez-Torres, H., and Gimeno, M. (2019). Complementary electrochromic devices of PANI and PEDOT using the enzymatic poly(gallic acid). Solar Energy Materials and Solar Cells, 200, 109973. https://doi.org/10.1016/j.solmat.2019.109973. DOI: https://doi.org/10.1016/j.solmat.2019.109973
Ding, S. (2021). High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts. Applied Catalysis B: Environmental, 281, 119471. https://doi.org/10.1016/j.apcatb.2020.119471 DOI: https://doi.org/10.1016/j.apcatb.2020.119471
Departamento Nacional de Planeación (DNP) (2017). Vidrio en Colombia. https://www.revistaespacios.com/a02v23n01/02230122.htm
Dong D. (2018). Enhanced electrochromism in short wavelengths for NiO:(Li, Mg) films in full inorganic device ITO/NiO:(Li, Mg)/Ta2O5/WO3/ITO. Electrochimical Acta, 263, 277-285. https://doi.org/10.1016/j.electacta.2018.01.049 DOI: https://doi.org/10.1016/j.electacta.2018.01.049
Dong, D. (2020). Electrochromic and colorimetric properties of anodic NiO thin films: Uncovering electrochromic mechanism of NiO. Electrochimical Acta, 335, 135648. https://doi.org/10.1016/j.electacta.2020.135648 DOI: https://doi.org/10.1016/j.electacta.2020.135648
Dulgerbaki, C., Maslakci, N. N., Komur, A. I., and Oksuz, A. U. (2018) Electrochromic strategy for tungsten oxide/polypyrrole hybrid nanofiber materials. European Polymer Journal, 107, 173-180. https://doi.org/10.1016/j.eurpolymj.2018.07.050 DOI: https://doi.org/10.1016/j.eurpolymj.2018.07.050
El-Nahass, M. M., Saadeldin, M. M., Ali, H. A. M., and Zaghllol, M. (2015). Electrochromic properties of amorphous and crystalline WO3 thin films prepared by thermal evaporation technique. Materials Science in Semiconductor Processing, 29, 201-205. https://doi.org/10.1016/j.mssp.2014.02.051 DOI: https://doi.org/10.1016/j.mssp.2014.02.051
Farhad, S. F. U. (2021). The effect of substrate temperature and oxygen partial pressure on the properties of nanocrystalline copper oxide thin films grown by pulsed laser deposition. Data in Brief, 34, 106644. https://doi.org/10.1016/j.dib.2020.106644 DOI: https://doi.org/10.1016/j.dib.2020.106644
First, Y. E., and Peksoz, A. (2019). Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential. Electrochimica Acta, 295, 645-654. https://doi.org/10.1016/j.electacta.2018.10.166 DOI: https://doi.org/10.1016/j.electacta.2018.10.166
Fletcher, S. (2015). The definition of electrochromism. Journal of Solid State Electrochemistry, 19, 3305-3308. https://doi.org/10.1007/s10008-015-3039-9 DOI: https://doi.org/10.1007/s10008-015-3039-9
Ganesh, G. P. T., Ravi, R., and Deb, B. (2015). A pragmatic approach to methyl methacrylate based solid polymer electrolyte processing: A case study for electrochromism. Solar Energy Materials and Solar Cells, 140, 17-24. https://doi.org/10.1016/j.solmat.2015.03.022 DOI: https://doi.org/10.1016/j.solmat.2015.03.022
Gao, S., Sun, F., Liu, N., Yang, H., and Cao, P.-F. (2020). Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries–A review, Materials Today, 40, 140-159. https://doi.org/10.1016/j.mattod.2020.06.011 DOI: https://doi.org/10.1016/j.mattod.2020.06.011
Gesheva, K. (2016). Optical, structural and electrochromic properties of sputter-deposited W-Mo oxide thin films. Journal of Physics: Conference Series, 764, 012010. https://doi.org/10.1088/1742-6596/764/1/012010 DOI: https://doi.org/10.1088/1742-6596/764/1/012010
Gugole, M. (2020). High-contrast switching of plasmonic structural colors: Inorganic versus organic electrochromism. ACS Photonics, 7(7), 1762-1772. https://doi.org/10.1021/acsphotonics.0c00394. DOI: https://doi.org/10.1021/acsphotonics.0c00394
Gupta, J., Shaik, H., Kumar, K. N. (2021). A review on the prominence of porosity in tungsten oxide thin films for electrochromism. Ionics, 27(6), 2307-2334. https://doi.org/10.1007/s11581-021-04035-8 DOI: https://doi.org/10.1007/s11581-021-04035-8
Gupta, J., Shaik, H., Kumar, K. N., and Sattar, S. A. (2022a). PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO3) thin films: A review. Materials Science in Semiconductor Processing, 143, 106534. https://doi.org/10.1016/j.mssp.2022.106534 DOI: https://doi.org/10.1016/j.mssp.2022.106534
Gupta, J., Shaik, H., Kumar, K. N., Sattar, S. A., and Reddy, G. A. (2022). Optimization of deposition rate for E-beam fabricated tungsten oxide thin films towards profound electrochromic applications. Applied Physics A, 128(6), 498. https://doi.org/10.1007/s00339-022-05609-7 DOI: https://doi.org/10.1007/s00339-022-05609-7
Han, W. J., Lee, J. H., and Choi, H. J. (2020). Poly(diphenylamine)/polyaniline core/shell composite nanospheres synthesized using a reactive surfactant and their electrorheology. Polymer, 188, 122161. https://doi.org/10.1016/j.polymer.2020.122161 DOI: https://doi.org/10.1016/j.polymer.2020.122161
Hasani A. (2017). Facile solution synthesis of tungsten trioxide doped with nanocrystalline molybdenum trioxide for electrochromic devices. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-13341-z DOI: https://doi.org/10.1038/s41598-017-13341-z
Hernández, T. S. (2020). Electrolyte for improved durability of dynamic windows based on reversible metal electrodeposition. Joule, 4(7), 1501-1513. https://doi.org/10.1016/j.joule.2020.05.008 DOI: https://doi.org/10.1016/j.joule.2020.05.008
Hidalgo-Rodríguez., J. (2002). Electrocromismo de los metales de transición. [Undergraduate thesis, Universidad Nacional de Ingeniería]. http://repositorio.uni.edu.pe/bitstream/uni/9151/1/hidalgo_rj.pdf
Ho, C. H., Kuo, Y. M., Chan, C. H., and Ma, Y. R. (2015). Optical characterization of strong UV luminescence emitted from the excitonic edge of nickel oxide nanotowers. Scientific Reports, 5, 1-7. https://doi.org/10.1038/srep15856 DOI: https://doi.org/10.1038/srep15856
Hu, F., Peng, H., Zhang, S., Gu, Y., Yan, B., and Chen, S. (2019). PEDOT nanoparticles fully covered on natural tubular clay for hierarchically porous electrochromic film. Solar Energy Materials and Solar Cells, 199, 59-65. https://doi.org/10.1016/j.solmat.2019.04.017 DOI: https://doi.org/10.1016/j.solmat.2019.04.017
Huang, Q., Zhang, Q., Xiao, Y., He, Y., and Diao, X. (2018). Improved electrochromic performance of NiO-based thin films by lithium and tantalum co-doping. Journal of Alloys and Compounds, 747, 416-422. https://doi.org/10.1016/j.jallcom.2018.02.232 DOI: https://doi.org/10.1016/j.jallcom.2018.02.232
Inamdar, A. I., Chavan, H. S., Kim, H., and Im, H. (2019). Mesoporous Ni-PANI composite electrode for electrochromic energy storage applications. Solar Energy Materials and Solar Cells, 201, 110121. https://doi.org/10.1016/j.solmat.2019.110121 DOI: https://doi.org/10.1016/j.solmat.2019.110121
Jamdegni, M., and Kaur, A. (2020). Highly efficient dark to transparent electrochromic electrode with charge storing ability based on polyaniline and functionalized nickel oxide composite linked through a binding agent. Electrochimica Acta, 331, 135359. https://doi.org/10.1016/j.electacta.2019.135359 DOI: https://doi.org/10.1016/j.electacta.2019.135359
Jang, H., and Lee, J. (2020). Iridium oxide fabrication and application: A review. Journal of Energy Chemistry, 46, 152-172. https://doi.org/10.1016/j.jechem.2019.10.026 DOI: https://doi.org/10.1016/j.jechem.2019.10.026
Jeong, C. Y. (2020). Electrochromic properties of sputter-deposited rhodium oxide thin films of varying thickness. Thin Solid Films, 709, 138226. https://doi.org/10.1016/j.tsf.2020.138226 DOI: https://doi.org/10.1016/j.tsf.2020.138226
Jia, H. (2019). Dual-response and Li+-insertion induced phase transition of VO2-based smart windows for selective visible and near-infrared light transmittance modulation. Solar Energy Materials and Solar Cells, 200, 110045. https://doi.org/10.1016/j.solmat.2019.110045 DOI: https://doi.org/10.1016/j.solmat.2019.110045
Jiang, F., Zheng, T., and Yang, Y. (2008). Preparation and electrochromic properties of tungsten oxide and iridium oxide porous films. Journal of Non-Crystalline Solids, 354(12-13), 1290-1293. https://doi.org/10.1016/j.jnoncrysol.2006.10.083 DOI: https://doi.org/10.1016/j.jnoncrysol.2006.10.083
Jittiarporn, P., Badilescu, S., Al-Sawafta, M. N., Sikong, L., and Van-Truong, V. (2017). Electrochromic properties of sol-gel prepared hybrid transition metal oxides – A short review. Journal of Science: Advanced Materials and Devices, 2(3), 286-300. https://doi.org/10.1016/j.jsamd.2017.08.005 DOI: https://doi.org/10.1016/j.jsamd.2017.08.005
Jung, H. K. (2020). Au-incorporated NiO nanocomposite thin films as electrochromic electrodes for supercapacitors. Electrochimica Acta, 330, 135203. https://doi.org/10.1016/j.electacta.2019.135203 DOI: https://doi.org/10.1016/j.electacta.2019.135203
Kalanur, S. S., Noh, Y. G., and Seo, H. (2020). Engineering band edge properties of WO3 with respect to photoelectrochemical water splitting potentials via a generalized doping protocol of first-row transition metal ions. Applied Surface Science, 509, 145253. https://doi.org/10.1016/j.apsusc.2020.145253 DOI: https://doi.org/10.1016/j.apsusc.2020.145253
Kalay, I., Yiğit, D., Güllü, M., Depci, T., Toppare, L., and Hacioglu, S. O. (2020). Enhancing electrochemical and electrochromic performances of carbazole comprising monomer via copolymerization with 3,4-ethylenedioxythiophene (EDOT). Synthetic Metals, 267, 116449. https://doi.org/10.1016/j.synthmet.2020.116449 DOI: https://doi.org/10.1016/j.synthmet.2020.116449
Karaca, G. Y., Eren, E., Cogal, G. C., Uygun, E., Oksuz, L., and Uygun A. Oksuz (2019). Enhanced electrochromic characteristics induced by Au/PEDOT/Pt microtubes in WO3 based electrochromic devices. Opical Materials, 88, 472–478, https://doi.org/10.1016/j.optmat.2018.11.052 DOI: https://doi.org/10.1016/j.optmat.2018.11.052
Kazazi, M. (2019). High-performance electrode based on electrochemical polymerization of polypyrrole film on electrophoretically deposited CNTs conductive framework for supercapacitors. Solid State Ionics, 336, 80-86. https://doi.org/10.1016/j.ssi.2019.03.021 DOI: https://doi.org/10.1016/j.ssi.2019.03.021
Kim, H. N. (2016). Electrochromic mirror using viologen-anchored nanoparticles. Materials Research Bulletin, 82, 16-21. https://doi.org/10.1016/j.materresbull.2016.03.010 DOI: https://doi.org/10.1016/j.materresbull.2016.03.010
Kimura, R., Tsuboi, A., Nakamura, K., and Kobayashi, N. (2018). Effects of silver halide complexes on optical and electrochemical properties of silver deposition-based electrochromic device. Solar Energy Materials and Solar Cells, 177, 128-133. https://doi.org/10.1016/j.solmat.2017.01.014 DOI: https://doi.org/10.1016/j.solmat.2017.01.014
Koo, B. R., Jo, M. H., Kim, K. H., and Ahn, H. J. (2020). Multifunctional electrochromic energy storage devices by chemical cross-linking: Impact of a WO3·H2O nanoparticle-embedded chitosan thin film on amorphous WO3 films. NPG Asia Materials, 12(1), 10. https://doi.org/10.1038/s41427-019-0193-z DOI: https://doi.org/10.1038/s41427-019-0193-z
Kumar, N., Alam, F., Dwivedi, C., and Dutta, V. (2016). In-situ fabrication of metal-semiconductor (M-S) plasmonic thin films by a chemical spray pyrolysis technique: Optical properties. Solar Energy Materials and Solar Cells, 144, 352-358. https://doi.org/10.1016/j.solmat.2015.09.030 DOI: https://doi.org/10.1016/j.solmat.2015.09.030
Kumar, K. N., Shaik, H., Gupta, J., Sattar, S. A., Jafri, R. I., Pawar, A., Madhavi, H., Reddy G. V., A., and Nithya, G. (2022). Sputter deposited tungsten oxide thin films and nanopillars: electrochromic perspective. Materials Chemistry and Physics, 278, 125706. https://doi.org/10.1016/j.matchemphys.2022.125706 DOI: https://doi.org/10.1016/j.matchemphys.2022.125706
Kumar, K. N., Nithya, G., Shaik, H., Hemanth, B., Chethana, M., Kishore, K., Madhavi, V., Imran Jafri, R., Sattar, S. A., Gupta, and Reddy, G. V. A. (2022a). Simulation and fabrication of tungsten oxide thin films for electrochromic applications. Physica B: Condensed Matter, 640, 413932. https://doi.org/10.1016/j.physb.2022.413932 DOI: https://doi.org/10.1016/j.physb.2022.413932
Kumar, K. N., Shaik, H., Pawar, A., Chandrashekar, L. N., Sattar, S. A., Nithya, G., Imran Jafri, R., Madhavi, V., Gupta, J., and Reddy, G. V. A. (2022b). Effect of annealing and oxygen partial pressure on the RF sputtered WO3 thin films for electrochromic applications. Materials Today: Proceedings, 59, 339-344. https://doi.org/10.1016/j.matpr.2021.11.185 DOI: https://doi.org/10.1016/j.matpr.2021.11.185
Kumar, K. N., Shaik, H., Chandrashekar, L. N., Aishwarya, P., Sattar, S. A., Nithya, G., Madhavi, V., Imran Jafri, R., Gupta, J., and Reddy, G. V. A. (2022c). On ion transport during the electrochemical reaction on plane and GLAD deposited WO3 thin films. Materials Today: Proceedings, 59, 275-282. https://doi.org/10.1016/j.matpr.2021.11.113 DOI: https://doi.org/10.1016/j.matpr.2021.11.113
Legis-Comex, Sistema de Inteligencia Comercial, Inteligencia de Mercados (2017). Informe sectorial de vidrio en Colombia 2017. https://www.legiscomex.com/BancoMedios/Documentos%20PDF/informe-sectorial-sector-vidrio-colombia-2017-completo-rci318.pdf
Li W. (2020). Preparation and performance of fast-response ITO/Li-NiO/Li-WO3/ITO all-solid-state electrochromic devices by evaporation method. Materials Letters, 265, 127464. https://doi.org/10.1016/j.matlet.2020.127464 DOI: https://doi.org/10.1016/j.matlet.2020.127464
Li, B., Liu, J., Tian, S., Liu, B., Yang, X., Yu, Z., and Zhao, X. (2019). VO2-ZnO composite films with enhanced thermochromic properties for smart windows. Ceramics International, 46(13), 2758-2763. https://doi.org/10.1016/j.ceramint.2019.09.264 DOI: https://doi.org/10.1016/j.ceramint.2019.09.264
Li, S. (2020). Grafting polymer from oxygen-vacancy-rich nanoparticles to enable protective layers for stable lithium metal anode. Nano Energy, 76, 105046. https://doi.org/10.1016/j.nanoen.2020.105046 DOI: https://doi.org/10.1016/j.nanoen.2020.105046
Lin K. (2020). Star-shaped trithiophene and hexathiophene functionalized truxenes: Synthesis, electropolymerization, and electrochromism. Reactive & Functional Polymers, 154, 104. https://doi.org/10.1016/j.reactfunctpolym.2020.104674 DOI: https://doi.org/10.1016/j.reactfunctpolym.2020.104674
Liu, Z. (2019). Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Materials, 11, 12. https://doi.org/10.1038/s41427-019-0112-3 DOI: https://doi.org/10.1038/s41427-019-0112-3
Liu, Z., Shang, S., Chiu, K.-I., Jiang, S., and Dai, F. (2019). Fabrication of conductive and flame-retardant bifunctional cotton fabric by polymerizing pyrrole and doping phytic acid. Polymer Degradation and Stability, 167, 277-282. https://doi.org/10.1016/j.polymdegradstab.2019.06.029 DOI: https://doi.org/10.1016/j.polymdegradstab.2019.06.029
Marchisio, S., Lerro, F., and Von Pamel, O. (2015). Empleo de un laboratorio remoto para promover aprendizajes significativos en la enseñanza de los dispositivos electrónicos. Píxel-Bit. Revista de Medios y Educación, 38, 129-139. http://www.redalyc.org/pdf/368/36816200010.pdf
Matysiak, W., Tański, T., Smok, W., Gołombek, K., and Schab-Balcerzak, E. (2020). Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene and polyaniline. Applied Surface Science, 509, 145068. https://doi.org/10.1016/j.apsusc.2019.145068 DOI: https://doi.org/10.1016/j.apsusc.2019.145068
Meenakshi, M., Sivakumar, R., Perumal, P., and Sanjeeviraja, C. (2016). Studies on electrochromic properties of RF sputtered vanadium oxide: Tungsten oxide thin films. Materials Today: Proceedings, 3, S30-S39. https://doi.org/10.1016/j.matpr.2016.01.005 DOI: https://doi.org/10.1016/j.matpr.2016.01.005
Mendieta-Reyes, N. E., Cheuquepán, W., Rodes, A., and Gómez, R. (2020). Spectroelectrochemical study of CO2 reduction on TiO2 electrodes in acetonitrile. ACS Catalysis, 10(1), 103-113. https://doi.org/10.1021/acscatal.9b02932 DOI: https://doi.org/10.1021/acscatal.9b02932
Ministerio Colombiano de Ciencia, Tecnología e innovación (MINCIENCIAS) and Vicepresidencia de la República de Colombia (2020). Misión Internacional de sabios: Colombia y la nueva revolución industrial. https://doi.org/10.17230/9789585135116vdyc DOI: https://doi.org/10.17230/9789585135116vdyc
Ministerio Colombiano de Ciencia, Tecnología e innovación (MINCIENCIAS) (2022). Base de datos, grupos de investigación. https://minciencias.gov.co/sites/default/files/convocatoria/listado_resultados_preliminares_-_convocatoria_894_de_2021_-_grupos.pdf
Ministerio Colombiano de Comercio (MINCIT) (2019a). Plan de Negocios Sector de Plásticos a 2032. https://www.colombiaproductiva.com/ptp-capacita/publicaciones/sectoriales/publicaciones-plasticos-y-pinturas/plan-de-negocio-industria-de-plasticos-2019-2032
Ministerio Colombiano de Comercio (MINCIT). Plan de Negocios Sector de Químicos Visión a 2032. https://www.colombiaproductiva.com/ptp-capacita/publicaciones/sectoriales/publicaciones-quimica-basica/plan-de-negocio-industria-quimica-basica-2019-2032
Ministerio Colombiano de Minas y Energía (MINMINAS) (2018). Níquel caracterización y análisis de mercado internacional de minerales en el corto, mediano, y largo plazo con vigencia al año 2035. https://www1.upme.gov.co/simco/Cifras-Sectoriales/Datos/mercadointer/Producto2_Niquel_FINAL_12DIC2018.pdf#search=niquel
Mishra, S. (2017). Live spectroscopy to observe electrochromism in viologen based solid state device. Solid State Communications, 261, 17-20, https://doi.org/10.1016/j.ssc.2017.05.020 DOI: https://doi.org/10.1016/j.ssc.2017.05.020
Monk, P. M. S., Rosseinsky, D. R., and Mortimer, R. J. (2015). Electrochromic materials and devices based on viologens. Electrochromic Materials and Devices, 77, 57-90. https://doi.org/10.1002/9783527679850.ch3 DOI: https://doi.org/10.1002/9783527679850.ch3
Morales-Torres, J.A., Olaya-Florez, J.-J., and Rojas, H. F. (2009). Evaluación de la capacidad protectora de recubrimientos Ni-SiC y Ni-Co-W depositados por proyección térmica. Dyna, 76(160) 195-206. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532009000400019
Murphy, N. R., Moreno-Tarango, A. J., Ramana, C. V., Sun, L., Jones, J. G., and Grant, J. T. (2016). Hybrid co-deposition of molybdenum doped niobium pentoxide (NbxMoyOz) thin films. Journal of Alloys and Compounds, 681, 350-358. https://doi.org/10.1016/j.jallcom.2016.04.233 DOI: https://doi.org/10.1016/j.jallcom.2016.04.233
OECD (2019) Economic Surveys, 48. http://www.oecd.org/economy/surveys/Overview_Colombia_ESP.pdf
Paipitak, K., Kahattha, C., Techitdheera, W., Porntheeraphat, S., and Pecharapa, W. (2011). Characterization of Sol-gel derived Ti-doped tungsten oxide electrochromic thin films. Energy Procedia, 9, 446-451. https://doi.org/10.1016/j.egypro.2011.09.050 DOI: https://doi.org/10.1016/j.egypro.2011.09.050
Pan, J. (2020). A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window. Solar Energy Materials and Solar Cells, 207, 110337. https://doi.org/10.1016/j.solmat.2019.110337 DOI: https://doi.org/10.1016/j.solmat.2019.110337
Pandey, S. (2016). Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review” Journal of Science: Advanced Materials and Devices, 1(4), 431-453. https://doi.org/10.1016/j.jsamd.2016.10.005 DOI: https://doi.org/10.1016/j.jsamd.2016.10.005
Pham, N. S., Seo, Y. H., Park, E., Nguyen, T. D. D., and Shin, I. S. (2020). Implementation of high-performance electrochromic device based on all-solution-fabricated Prussian blue and tungsten trioxide thin film. Electrochimica Acta, 353, 136446. https://doi.org/10.1016/j.electacta.2020.136446 DOI: https://doi.org/10.1016/j.electacta.2020.136446
Prieto R. G., Guatame, C. L., and Cárdenas, S. C. (Comps.) (2019). Recursos minerales de Colombia. Servicio Geológico Colombiano. https://www2.sgc.gov.co/Publicaciones/Cientificas/NoSeriadas/Documents/recursos-minerales-de-colombia-vol-2.pdf
Puguan, J. M. C., and Kim, H. (2019). Ionene copolymer electrolyte obtained from cyclo-addition of di-alkyne and di-azide monomers for solid-state smart glass windows. Journal of Industrial and Engineering Chemistry, 74, 1-6. https://doi.org/10.1016/j.jiec.2019.03.006 DOI: https://doi.org/10.1016/j.jiec.2019.03.006
Ramadan, R., Elshorbagy, M. H., Kamal, H., Hashem, H. M., and Abdelhady, K. (2017). Preparation and characterization of protonic solid electrolyte applied to a smart window device with high optical modulation. Optik, 135, 85-97. https://doi.org/10.1016/j.ijleo.2017.01.056 DOI: https://doi.org/10.1016/j.ijleo.2017.01.056
Rathika, R. (2020). Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation. Nuclear Engineering and Technology, 52(11), 2585-2593. https://doi.org/10.1016/j.net.2020.04.013 DOI: https://doi.org/10.1016/j.net.2020.04.013
Richardson, T. J., Slack, J. L., and Rubin, M. D. (2018). Electrochromism in copper oxide. Thin Films, 46, 13-14. https://doi.org/10.1016/S0013-4686(01)00397-8 DOI: https://doi.org/10.1016/S0013-4686(01)00397-8
Sahu, D. R., Wu, T. J., Wang, S. C., and Huang, J. L. (2017). Electrochromic behavior of NiO film prepared by e-beam evaporation. Journal of Science: Advanced Materials and Devices, 2, 225-232. https://doi.org/10.1016/j.jsamd.2017.05.001 DOI: https://doi.org/10.1016/j.jsamd.2017.05.001
Shi, Y., Chen, Q., Zheng, J., and Xu, C. (2020a). Electrochromism of substituted phthalate derivatives and outstanding performance of corresponding multicolor electrochromic devices. Electrochimica Acta, 341, 136023. https://doi.org/10.1016/j.electacta.2020.136023 DOI: https://doi.org/10.1016/j.electacta.2020.136023
Shi, Y., Wang, G., Chen, Q., Zheng, J., and Xu, C. (2020b). Electrochromism and electrochromic devices of new extended viologen derivatives with various substituent benzene. Solar Energy Materials and Solar Cells, 208, 110413. https://doi.org/10.1016/j.solmat.2020.110413 DOI: https://doi.org/10.1016/j.solmat.2020.110413
Sistema Nacional de Información para la Educación Superior en Colombia (SNIES) (2021). Base de datos programas académicos en Colombia. https://hecaa.mineducacion.gov.co/consultaspublicas/programas.
Sorar., I., Pehlivan, B., Granqvist, C. G., and Niklasson, G. A. (2019). Electrochromism of W–In oxide thin films: Implications for cycling durability. Thin Solid Films, 697(1) 137830. https://doi.org/10.1016/j.tsf.2020.137830 DOI: https://doi.org/10.1016/j.tsf.2020.137830
Sun H. (2015). Smart responsive phosphorescent materials for data recording and security protection. Nature Communications, 5, 2-10. https://doi.org/10.1038/ncomms4601 DOI: https://doi.org/10.1038/ncomms4601
Sun, S. (2020). Flexible and rechargeable electrochromic aluminium-ion battery based on tungsten oxide film electrode. Solar Energy Materials and Solar Cells, 207, 110. https://doi.org/10.1016/j.solmat.2019.110332 DOI: https://doi.org/10.1016/j.solmat.2019.110332
Szkoda, M., Trzciński, K., Nowak, A. P., Gazda, M., Sawczak, M., and Lisowska-Oleksiak, A. (2020). The effect of morphology and crystalline structure of Mo/MoO3 layers on photocatalytic degradation of water organic pollutants. Materials Chemistry and Physics, 248, 122908. https://doi.org/10.1016/j.matchemphys.2020.122908 DOI: https://doi.org/10.1016/j.matchemphys.2020.122908
Tang, C. J. (2019). An all-solid-state electrochromic device based on WO3-Nb2O5 composite films prepared by fast-alternating bipolar-pulsed reactive magnetron sputtering. Coatings, 9(1), 9. https://doi.org/10.3390/coatings9010009 DOI: https://doi.org/10.3390/coatings9010009
Tang, X., Chen, G., Liao, H., Li, Z., Zhang, J., and Luo, J. (2020). Unveiling mechanical degradation for a monolithic electrochromic device: Glass/ITO/WO3/LiClO4 (PEO)/TiO2/ITO/glass. Electrochimica. Acta, 329, 135182. https://doi.org/10.1016/j.electacta.2019.135182 DOI: https://doi.org/10.1016/j.electacta.2019.135182
Thummavichai, K., Xia, Y., and Zhu, Y. (2017). Recent progress in chromogenic research of tungsten oxides towards energy-related applications. Progress Materials Science, 88, 281-324. https://doi.org/10.1016/j.pmatsci.2017.04.003 DOI: https://doi.org/10.1016/j.pmatsci.2017.04.003
Tsai, H., Ceretti, E., Rizzi, D., Ginestra, P., Kao, T., and Leu, M. C. (2021). Laser induced metallization on flexible polymer coating: Analysis and application. Progress in Materials Science, 290, 116986. https://doi.org/10.1016/j.jmatprotec.2020.116986 DOI: https://doi.org/10.1016/j.jmatprotec.2020.116986
Tsige, A., Ganesh, T., Mensur, D., and Tesfaye, D. (2020). Thermal studies on chemical bath deposited thermochromic VO2 thin film for energy efficient glass windows. Materials Today: Proceedings, 45(Part 7), 6171-6175. https://doi.org/10.1016/j.matpr.2020.10.480 DOI: https://doi.org/10.1016/j.matpr.2020.10.480
Ullah, W., Herzog, G., Vilà, N., and Walcarius, A. (2021). Electrografting and electropolymerization of nanoarrays of PANI filaments through silica mesochannels. Electrochemistry Communications, 122, 106896. https://doi.org/10.1016/j.elecom.2020.106896 DOI: https://doi.org/10.1016/j.elecom.2020.106896
Varghese-Hansen, R., Yang, J., and Zheng., L. (2018). Flexible electrochromic materials based on CNT/PDA hybrids. Advances in Colloid and Interface Science, 258, 21-35. https://doi.org/10.1016/j.cis.2018.07.003 DOI: https://doi.org/10.1016/j.cis.2018.07.003
Vicepresidencia de la República de Colombia and Ministerio de Ciencia, Tecnología e Innovación (MINCIENCIAS) (2020). Misión Internacional de Sabios: Colombia hacia una sociedad del conocimiento https://minciencias.gov.co/sites/default/files/upload/paginas/ebook_colombia_hacia_una_sociedad_del_conocimiento.pdf
Wang, L. (2020). Polymer of intrinsic microporosity (PIM) films and membranes in electrochemical energy storage and conversion: A mini-review. Electrochemistry Communications, 118, 106798. https://doi.org/10.1016/j.elecom.2020.106798 DOI: https://doi.org/10.1016/j.elecom.2020.106798
Wang, W. (2020). Controllable vapor phase polymerization of PEDOT films using imidazole as an inhibitor and their electrical and electrochromic properties. Synthetic Metals, 269, https://doi.org/10.1016/j.synthmet.2020.116523. DOI: https://doi.org/10.1016/j.synthmet.2020.116523
Wang, Y. C., Lu, H. C., Hsiao, L. Y., Lu, Y. A, and Ho, K. C. (2019). A complementary electrochromic device composed of nanoparticulated ruthenium purple and Fe(II)-based metallo-supramolecular polymer. Solar Energy Materials and Solar Cells, 200, 10. https://doi.org/10.1016/j.solmat.2019.109929 DOI: https://doi.org/10.1016/j.solmat.2019.109929
Wang, Y., Lei, Q., Dong, W., Mo, X., and Li, H. (2020). Photoelectric effect driving PANI/PB multicolor visualized detection of CEA based on Ag2S NPs@ZnO NTs. Analytica Chimica Acta, 1108, 61-69. https://doi.org/10.1016/j.aca.2020.02.053 DOI: https://doi.org/10.1016/j.aca.2020.02.053
Wang, Z., Wang, X., Cong, S., Geng, F., and Zhao, Z. (2020). Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Materials Science & Engineering R: Reports, 140, 54. https://doi.org/10.1016/j.mser.2019.100524 DOI: https://doi.org/10.1016/j.mser.2019.100524
Wen-Cheun Au, B., Chan, K. Y., and Knipp, D. (2019). Effect of film thickness on electrochromic performance of sol-gel deposited tungsten oxide (WO3). Optical Materials, 94, 387-392. https://doi.org/10.1016/j.optmat.2019.05.051 DOI: https://doi.org/10.1016/j.optmat.2019.05.051
Wu, H. (2019). Electrically responsive structural colors from colloidal crystal arrays of PS@PANI core–shell nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 577, 75-83. https://doi.org/10.1016/j.colsurfa.2019.05.049 DOI: https://doi.org/10.1016/j.colsurfa.2019.05.049
Wu, L., Ge, Y., Zhang, L., Yu, D., Wu, M., and Ni, H. (2018). Enhanced electrical conductivity and competent mechanical properties of polyaniline/polyacrylate (PANI/PA) composites for antistatic finishing prepared at the aid of polymeric stabilizer. Progress in Organic Coatings, 125, 99-108. https://doi.org/10.1016/j.porgcoat.2018.09.002 DOI: https://doi.org/10.1016/j.porgcoat.2018.09.002
Xu, D. (2020). Effect of counter anion on the uniformity, morphology and electrochromic properties of electrodeposited poly(3,4-ethylenedioxythiophene) film. Journal of Electroanalytical Chemistry, 861, 113833. https://doi.org/10.1016/j.jelechem.2020.113833 DOI: https://doi.org/10.1016/j.jelechem.2020.113833
Xu, K. (2020). Integrated electrochromic supercapacitors with visual energy levels boosted by coating onto carbon nanotube conductive networks. Solar Energy Materials and Solar Cells, 206, 110330. https://doi.org/10.1016/j.solmat.2019.110330 DOI: https://doi.org/10.1016/j.solmat.2019.110330
Xu, Z. (2020). Color tuning for black-to-transmissive conjugated copolymer with excellent electrochromic properties via electrochemical copolymerization of two donor-acceptor type monomers. Materials and Design, 194, 108903. https://doi.org/10.1016/j.matdes.2020.108903 DOI: https://doi.org/10.1016/j.matdes.2020.108903
Yao, Y., Zhao, Q., Wei, W., Chen, Z., Zhu, Y., Zhang, P., and Gao, Y. (2020). WO3 quantum-dots electrochromism. Nano Energy, 68, 104350. https://doi.org/10.1016/j.nanoen.2019.104350 DOI: https://doi.org/10.1016/j.nanoen.2019.104350
Yang, P., Sun, P., and Mai, W. (2016). Electrochromic energy storage devices. Materials Today, 19, 394-401. https://doi.org/10.1016/j.mattod.2015.11.007 DOI: https://doi.org/10.1016/j.mattod.2015.11.007
Yin, J., Liu, Q., Zhou, J., Zhang, L., Zhang, Q., Rao, R., Liu, S., and Jiao, T. (2020). Self-assembled functional components-doped conductive polypyrrole composite hydrogels with enhanced electrochemical performances. RSC Advances, 10(18), 10546-10551. https://doi.org/10.1039/d0ra00102c DOI: https://doi.org/10.1039/D0RA00102C
Yu, H., Guo, J., Wang, C., Zhang, J., Liu, J., Dong, G., Zhong, X., and Diao, X. (2020). Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing. Electrochimica Acta, 332, 135504. https://doi.org/10.1016/j.electacta.2019.135504. DOI: https://doi.org/10.1016/j.electacta.2019.135504
Yun, T. Y., Li, X., Bae, J., Kim, S. H., and Moon, H. C. (2019). Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices. Materials and Design, 162, 45-51. https://doi.org/10.1016/j.matdes.2018.11.016 DOI: https://doi.org/10.1016/j.matdes.2018.11.016
Zeng, J., Yang, H., Zhong, C., Rajan, K., Rehman Sagar, R., Qi, X., Deng, Y., Jiang, H., Liu, P., Liang, T. (2021). Colorless-to-black electrochromic devices based on ambipolar electrochromic system consisting of cross-linked poly(4-vinyltriphenylamine) and tungsten trioxide with high optical contrast in visible and near-infrared regions. Chemical Engineering Journal, 404, 126402. https://doi.org/10.1016/j.cej.2020.126402 DOI: https://doi.org/10.1016/j.cej.2020.126402
Zhang, B., Xu, C., Xu, G., Tan, S., and Zhang, J. (2019). Amorphous titanium dioxide film with improved electrochromism in near-infrared region. Optical Materials, 89, 191-196. https://doi.org/10.1016/j.optmat.2019.01.034 DOI: https://doi.org/10.1016/j.optmat.2019.01.034
Zhang, F., Feng, Y., and Feng, W. (2020). Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Materials Science and Engineering: R: Reports, 142, 100580. https://doi.org/10.1016/j.mser.2020.100580 DOI: https://doi.org/10.1016/j.mser.2020.100580
Zhang, H., Xu, H., Endres, F., and Li, Y. (2020). Multi-color poly(3-methylthiophene) films prepared by a novel pre-nucleation electrodeposition grown method for enhancing electrochromic stability. Electrochimica Acta, 362, 137103. https://doi.org/10.1016/j.electacta.2020.137103 DOI: https://doi.org/10.1016/j.electacta.2020.137103
Zhang, Y., Shi, X., Xiao, S., and Xiao, D. (2021). Visible and infrared electrochromism of bis(2-(2-(2-hydroxyethoxy)ethoxy)ethyl) viologen with sodium carboxymethyl chitosan-based hydrogel electrolytes. Dyes and Pigments, 185(PA), 108893. https://doi.org/10.1016/j.dyepig.2020.108893 DOI: https://doi.org/10.1016/j.dyepig.2020.108893
Zheng, M., Xiao, X., Li, L., Gu, P., Dai, X., Tang, H., Hu, Q., Xue, H., and Pang, H. (2018). Hierarchically nanostructured transition metal oxides for supercapacitors. Science China Materials, 61(2), 185-209. https://doi.org/10.1007/s40843-017-9095-4 DOI: https://doi.org/10.1007/s40843-017-9095-4
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Luis Felipe Hurtado-Palacios, Sandra Patricia Castro Narvaéz, Alonso Jaramillo-Aguirre
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la revista Ingeniería e Investigación, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la revista Ingeniería e Investigación en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/ingeinv), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la revista Ingeniería e Investigación para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.