Surface Roughness Value Recommended for the Manufacture of Antibacterial Metal Surfaces: A Review
Rugosidad superficial recomendada en la manufactura de superficies metálicas antibacterianas: una revisión
DOI:
https://doi.org/10.15446/ing.investig.102345Palabras clave:
bacterial adhesion, metal implant surface, surface roughness, bacterial biofilm (en)adhesión bacteriana, superficie de implantes metálicos, rugosidad superficial, biofilm bacteriano (es)
Descargas
The manufacturing of antibacterial metal surfaces has been widely studied in the elaboration dental and orthopedic implants. Surface characteristics such as wettability, chemistry, electrostatics, and roughness have been described as factors for avoiding bacterial adhesion. However, surface roughness is still debated among authors regarding its effect on antibacterial surfaces. This paper reviews the existing literature to identify the recommended surface roughness values for metal implants to avoid bacterial adhesion, and it evaluates the different roughness parameters used in this regard. This compilation found no agreement when it comes to the exact roughness that a metal implant’s surface should have to avoid bacterial adhesion and the subsequent formation of biofilms. In general, different authors recommend manufacturing smooth surfaces with a nanoscale roughness, smaller than the size of the target bacterium.
La manufactura de superficies metálicas antibacterianas ha sido ampliamente estudiada en la elaboración de implantes ortopédicos y dentales. Ciertas características de las superficies, tales como mojabilidad, química, electrostática y rugosidad, han sido señaladas como factores para prevenir la adhesión bacteriana. Sin embargo, la rugosidad superficial aún se encuentra en debate en cuanto a su efecto en las superficies antibacterianas. Este artículo realiza una revisión de la literatura existente para identificar los valores de rugosidad superficial recomendados para evitar la adhesión bacteriana en implantes metálicos, y evalúa los distintos parámetros de rugosidad utilizados en este contexto. Esta compilación no encontró un consenso en términos de la rugosidad exacta que la superficie de un implante metálico debería tener para evitar la adhesión bacteriana y la posterior formación de biofilms. En términos generales, diferentes autores recomiendan manufacturar superficies con rugosidades de escala nanométrica, menores que el tamaño de la bacteria objetivo.
Referencias
J. Palmer, S. Flint, and J. Brooks, “Bacterial cell attach-ment, the beginning of a bio-film,” J. Ind. Microbiol. Biotechnol, vol. 34, no. 9, pp. 577-588, 2007, https://doi.org/10.1007/s10295-007-0234-4 DOI: https://doi.org/10.1007/s10295-007-0234-4
B. Bhushan and Y. C. Jung, “Natural and biomimetic artifi-cial surfaces for superhy-drophobicity, self-cleaning, low adhesion, and drag reduction,” Prog. Mater. Sci., vol. 56, no. 1. pp. 1-108, 2011. https://doi.org/10.1016/j.pmatsci.2010.04.003 DOI: https://doi.org/10.1016/j.pmatsci.2010.04.003
World Health Organization, “Prevention of hospital-acquired infections: A practical guide,” 2002. [Online]. Available: https://iris.who.int/bitstream/handle/10665/67350/WHO_CDS_CSR_EPH_2002.12.pdf?sequence=1&isAllowed=y
P. Ginestra et al., “Post processing of 3D printed metal scaffolds: A preliminary study of antimicrobial efficiency,” Procedia Manuf., vol. ESAFORM 20, pp. 1106-1112, 2020. https://doi.org/10.1016/j.promfg.2020.04.126 DOI: https://doi.org/10.1016/j.promfg.2020.04.126
S. Kumar, D. N. Roy, and V. Dey, “A comprehensive review on techniques to create the anti-microbial surface of biomaterials to intervene in biofouling,” Colloids Interface Sci. Com., vol. 43, art. 100464, 2021. https://doi.org/10.1016/j.colcom.2021.100464 DOI: https://doi.org/10.1016/j.colcom.2021.100464
R. A. Mendoza, J.-C. Hsieh, and R. D. Galiano, “The impact of biofilm formation on wound healing,” in Wound Healing – Current Perspectives, K. Hakan Dogan, Ed., Lon-don, UK: IntechOpen, 2019, pp. 3-17. https://doi.org/10.5772/intechopen.85020 DOI: https://doi.org/10.5772/intechopen.85020
Instituto Nacional de Salud, “Boletín epidemiológico. Semana epidemiológica 09,” 2021. https://doi.org/10.33610/23576189.2021.09 DOI: https://doi.org/10.33610/23576189.2021.09
M. Malone et al., “The prevalence of biofilms in chronic wounds: A systematic review and meta-analysis of pub-lished data,” J. Wound Care, vol. 26, no. 1, pp. 20-25, 2017. https://doi.org/10.12968/jowc.2017.26.1.20 DOI: https://doi.org/10.12968/jowc.2017.26.1.20
Boletín Epidemiógico Semanal, “Infecciones asociadas a procedimientos médicos quirúrguicos,” 2017. [Online]. Available: https://www.ins.gov.co/BibliotecaDigital/Boletin-epidemiologico-semana-25-2019.pdf
L. M. Pandey, “Design of biocompatible and self-antibacterial titanium surfaces for biomedical applications,” Curr. Opinion Biomedical Eng., vol. 25, art. 100423, 2022. https://doi.org/10.1016/j.cobme.2022.100423 DOI: https://doi.org/10.1016/j.cobme.2022.100423
D. Campoccia, L. Montanaro, and C. R. Arciola, “The significance of infection related to orthopedic devices and issues of antibiotic resistance,” Biomater., vol. 27, no. 11, pp. 2331-2339, 2006. https://doi.org/10.1016/j.biomaterials.2005.11.044 DOI: https://doi.org/10.1016/j.biomaterials.2005.11.044
I. B. Beech, J. A. Sunner, C. R. Arciola, and P. Cristiani, “Microbially-influenced corrosion: Damage to prostheses, delight for bacteria,” Int. J. Artif. Organs, vol. 29, no. 4, pp. 443-452, 2006. https://doi.org/10.1177/039139880602900415 DOI: https://doi.org/10.1177/039139880602900415
R. Jia, T. Unsal, D. Xu, Y. Lekbach, and T. Gu, “Microbio-logically influenced corrosion and current mitigation strategies: A state of the art review,” I. Biodeterioration Bio-degradation, vol. 137. pp. 42-58, 2019. https://doi.org/10.1016/j.ibiod.2018.11.007 DOI: https://doi.org/10.1016/j.ibiod.2018.11.007
Z. Yuan, Y. He, C. Lin, P. Liu, and K. Cai, “Antibacterial surface design of biomedical titanium materials for ortho-pedic applications,” J. Mater Sci. Tech., vol. 78. pp. 51-67, 2021. https://doi.org/10.1016/j.jmst.2020.10.066 DOI: https://doi.org/10.1016/j.jmst.2020.10.066
M. Yang, Y. Ding, X. Ge, and Y. Leng, “Control of bacteri-al adhesion and growth on honeycomb-like patterned sur-faces,” Colloids Surf. B Biointerfaces, vol. 135, pp. 549-555, 2015. https://doi.org/10.1016/j.colsurfb.2015.08.010 DOI: https://doi.org/10.1016/j.colsurfb.2015.08.010
K. B.-C. Justyna Mazurek-Popczyk, L. Palka, K. Arkusz, and B. Dalewski, “Personalized, 3D- printed fracture fixation plates versus commonly used orthopaedic implant materials – Biomaterials characteristics and bacterial biofilm formation,” Injury, vol. 53, no. 3, pp. 938-946, 2022. https://doi.org/10.1016/j.injury.2021.12.020 DOI: https://doi.org/10.1016/j.injury.2021.12.020
M. Lorenzetti et al., “The relationship between the nanostructure of titanium surfaces and bacterial attach-ment,” ACS Nano, vol. 31, no. 4, pp. 706-713, 2010. https://doi.org/10.1016/j.biomaterials.2009.09.081 DOI: https://doi.org/10.1016/j.biomaterials.2009.09.081
S. Wu, B. Zhang, Y. Liu, X. Suo, and H. Li, “Influence of surface topography on bacterial adhesion: A review,” Bio-interphases, vol. 13, no. 6, art. 060801. https://doi.org/10.1116/1.5054057 DOI: https://doi.org/10.1116/1.5054057
S. B. Chinnaraj et al., “Modelling the combined effect of surface roughness and topography on bacterial attach-ment,” J. Mater. Sci. Tech., vol. 81, pp. 151-161, Jan. 2021. https://doi.org/10.1016/j.jmst.2021.01.011 DOI: https://doi.org/10.1016/j.jmst.2021.01.011
A. Lu, Y. Gao, T. Jin, X. Luo, Q. Zeng, and Z. Shang, “Ef-fects of surface roughness and texture on the bacterial adhesion on the bearing surface of bioceramic joint im-plants: An in vitro study,” Ceram. Int., vol. 46, no. 5, pp. 6550-6559, 2020. https://doi.org/10.1016/j.ceramint.2019.11.139 DOI: https://doi.org/10.1016/j.ceramint.2019.11.139
Y. Ammar, D. Swailes, B. Bridgens, and J. Chen, “Influence of surface roughness on the initial formation of biofilm,” Surf. Coat. Tech., vol. 284, pp. 410-416, 2015. https://doi.org/10.1016/j.surfcoat.2015.07.062 DOI: https://doi.org/10.1016/j.surfcoat.2015.07.062
Y. S. Huang and H. H. Huang, “Effects of clinical dental implant abutment materials and their surface characteristics on initial bacterial adhesion,” Rare Metals, vol. 38, no. 6, pp. 512-519, 2019. https://doi.org/10.1007/s12598-019-01219-0 DOI: https://doi.org/10.1007/s12598-019-01219-0
N. Mitik-Dineva, J. Wang, R. C. Mocanasu, P. R. Stoddart, R. J. Crawford, and E. P. Ivanova, “Impact of nano-topography on bacterial attachment,” Biotech. J., vol. 3, no. 4, pp. 536-544, 2008. https://doi.org/10.1002/biot.200700244 DOI: https://doi.org/10.1002/biot.200700244
R. Krishna Alla, K. Ginjupalli, N. Upadhya, M. Shammas, R. Krishna Ravi, and R. Sekhar, “Surface roughness of im-plants: A review,” Trends Biomater. Artif. Organs, vol. 25, no. 3, pp. 112-118, 2011. [Online]. Available: https://brnskll.com/wp-content/uploads/2019/02/taat11i3p112.pdf
G. R. M. Matos, “Surface roughness of dental implant and osseointegration,” J. Maxillofac. Oral Surg., vol. 20, no. 1, pp. 1-4, 2021. https://doi.org/10.1007/s12663-020-01437-5 DOI: https://doi.org/10.1007/s12663-020-01437-5
B. Azarhoushang and A. Daneshi, “Work-piece surface roughness,” in Tribology and Fundamentals of Abrasive Machining Processes, 3rd ed., B. Azarhoushang, I. D. Marinescu, W. B. Rowe, B. Dimitrov, and H. Ohmori, Eds., Amsterdam, The Netherlands: Elsevier, 2022, pp. 575-590. https://doi.org/10.1016/B978-0-12-823777-9.00015-X DOI: https://doi.org/10.1016/B978-0-12-823777-9.00015-X
V. S. Lukyanov, “Surface roughness and parameters,” Precis. Eng., vol. 5, no. 3, pp. 99-100, 1983. https://doi.org/10.1016/0141-6359(83)90001-6 DOI: https://doi.org/10.1016/0141-6359(83)90001-6
W. Group, “3D Roughness Metrology,” 2020[Online]. Available:. https://www.ptb.de/cms/en/ptb/fachabteilungen/abt5/fb-51/ag-514.html
“Roughness parameter,” in CIRP Encyclopedia of Production Engineering, Berlin, Heidelberg, Germany: Springer, 2019, p. 1497. https://doi.org/10.1007/978-3-662-53120-4_300588 DOI: https://doi.org/10.1007/978-3-662-53120-4_300588
T. Jeyapoovan and M. Murugan, “Surface roughness classification using image processing,” Measurement, vol. 46, no. 7, pp. 2065-2072, Apr. 2013. https://doi.org/10.1016/j.measurement.2013.03.014 DOI: https://doi.org/10.1016/j.measurement.2013.03.014
B. Bhushan, Mordern Tribology Handbook, 1st ed., Oxford-shire, UK: Taylor & Francis Group, 2000. https://doi.org/10.1201/9780849377877 DOI: https://doi.org/10.1201/9780849377877
C. J. Cortés-Rodríguez, F. C. Herreño Cuestas, and I. Z. Areque-Salazar, Medición de Rugosidad Superficial 3D, 1st ed., Kassel, Germany: Kassel University Press, 2019.
Geometrical product specification (GPS). Surface texture: Areal. Part 606: Nominal characteristics of non-contact (focus varia-tion) instruments, ISO 25178-606, International Organiza-tion for Standardization, Switzerland, Jun. 2015.
P. Podulka, “Selection of methods of surface texture characterisation for reduction of the frequency‐based er-rors in the measurement and data analysis processes,” Sensors, vol. 22, no. 3, art. 791, 2022. https://doi.org/10.3390/s22030791 DOI: https://doi.org/10.3390/s22030791
H. Johnson, “Surface roughness,” in Optical Properties of Surfaces, J. Vileger and D. Bedeaux, Singapore: World Sci-entific, 2001, pp. 401-429. https://doi.org/10.1142/9781860945434_0014 DOI: https://doi.org/10.1142/9781860945434_0014
N. Encinas et al., “Submicrometer-sized roughness sup-presses bacteria adhesion,” ACS Appl. Mater. Interfaces, vol. 12, no. 19, pp. 21192-21200, 2020. https://doi.org/10.1021/acsami.9b22621 DOI: https://doi.org/10.1021/acsami.9b22621
V. Vadillo-Rodríguez et al., “Bacterial response to spatially organized microtopographic surface patterns with na-nometer scale roughness,” Colloids Surf. B Biointerfaces, vol. 169, pp. 340-347, 2018. https://doi.org/10.1016/j.colsurfb.2018.05.038 DOI: https://doi.org/10.1016/j.colsurfb.2018.05.038
A. Kurup, P. Dhatrak, and N. Khasnis, “Surface modifica-tion techniques of titanium and titanium alloys for bio-medical dental applications: A review,” Mater. Today Proc., vol. 39, pp. 84-90, 2020. https://doi.org/10.1016/j.matpr.2020.06.163 DOI: https://doi.org/10.1016/j.matpr.2020.06.163
E. Medilanski, K. Kaufmann, L. Y. Wick, O. Wanner, and H. Harms, “Influence of the surface topography of stain-less steel on bacterial adhesion,” Biofouling, vol. 18, no. 3, pp. 193-203, 2002. https://doi.org/10.1080/08927010290011370 DOI: https://doi.org/10.1080/08927010290011370
S. Wu, S. Altenried, A. Zogg, F. Zuber, K. Maniura-Weber, and Q. Ren, “Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and mi-crocolony formation,” ACS Omega, vol. 3, no. 6, pp. 6456-6464, 2018. https://doi.org/10.1021/acsomega.8b00769 DOI: https://doi.org/10.1021/acsomega.8b00769
D. H. Kang, H. Choi, Y. J. Yoo, J. H. Kim, Y. B. Park, and H. S. Moon, “Effect of polishing method on surface rough-ness and bacterial adhesion of zirconia-porcelain veneer,” Ceram. Int., vol. 43, no. 7, pp. 5382-5387, 2017. https://doi.org/10.1016/j.ceramint.2016.11.036 DOI: https://doi.org/10.1016/j.ceramint.2016.11.036
M. Annunziata et al., “Bacterial adhesion to direct laser metal formed and mildly acid etched implant surfaces,” Surf. Coat. Tech., vol. 328, pp. 390-397, 2017. https://doi.org/10.1016/j.surfcoat.2017.09.011
K. Yang et al., “Bacterial antiadhesion surface design: Surface patterning, roughness and wettability: A review,” J. Mater. Sci. Tech., vol. 99, pp. 82-100, 2022. https://doi.org/10.1016/j.jmst.2021.05.028 DOI: https://doi.org/10.1016/j.jmst.2021.05.028
T. Wuirk, “Insect wings shred bacteria to pieces,” Nature News, Mar. 04, 2013. https://doi.org/10.1038/nature.2013.12533 DOI: https://doi.org/10.1038/nature.2013.12533
G. Lazzini, A. H. A. Lutey, L. Romoli, and F. Fuso, “Molecular dynamics model for the antibactericity of textured surfaces,” Colloids Surf. B Biointerfaces, vol. 199, art. 111504, 2021. https://doi.org/10.1016/j.colsurfb.2020.111504 DOI: https://doi.org/10.1016/j.colsurfb.2020.111504
A. Elbourne, R. J. Crawford, and E. P. Ivanova, “Nano-structured antimicrobial surfaces: From nature to synthet-ic analogues,” J. Colloid Interface Sci., vol. 508, pp. 603-616, 2017. https://doi.org/10.1016/j.jcis.2017.07.021 DOI: https://doi.org/10.1016/j.jcis.2017.07.021
T. Dantas et al., “Bacteria co-culture adhesion on different texturized zirconia surfaces,” J. Mech. Behav. Biomed. Ma-ter., vol. 123, art. 104786, 2021. https://doi.org/10.1016/j.jmbbm.2021.104786 DOI: https://doi.org/10.1016/j.jmbbm.2021.104786
L. Yin, Y. Nakanishi, A. R. Alao, X. F. Song, J. Abduo, and Y. Zhang, “A review of engineered zirconia surfaces in bi-omedical applications,” Procedia CIRP, vol. 65, pp. 284-290. https://doi.org/10.1016/j.procir.2017.04.057 DOI: https://doi.org/10.1016/j.procir.2017.04.057
U. Filipović, R. G. Dahmane, S. Ghannouchi, A. Zore, and K. Bohinc, “Bacterial adhesion on orthopedic implants,” Adv. Colloid Interface Sci., vol. 283, art. 102228, 2020. https://doi.org/10.1016/j.cis.2020.102228 DOI: https://doi.org/10.1016/j.cis.2020.102228
N. J. Bassous, C. L. Jones, and T. J. Web-ster, “3D printed Ti-6Al-4V scaffolds for supporting osteoblast and restricting bacterial functions without using drugs: Predictive equations and experiments,” Acta Biomater., vol. 96, pp. 662-673, 2019. https://doi.org/10.1016/j.actbio.2019.06.055 DOI: https://doi.org/10.1016/j.actbio.2019.06.055
H. L. Huang, Y. Y. Chang, M. C. Lai, C. R. Lin, C. H. Lai, and T. M. Shieh, “Antibacterial TaN-Ag coatings on titani-um dental implants,” Surf. Coat. Tech., vol. 205, no. 5, pp. 1636-1641, 2010. https://doi.org/10.1016/j.surfcoat.2010.07.096 DOI: https://doi.org/10.1016/j.surfcoat.2010.07.096
L. C. D. M. Dantas, J. P. Da Silva-Neto, T. S. Dantas, L. Z. Naves, F. D. Das Neves, and A. S. Da Mota, “Bacterial ad-hesion and surface roughness for different clinical tech-niques for acrylic polymethyl methacrylate,” Int. J. Dent., vol. 2016, art. 8685796, 2016. https://doi.org/10.1155/2016/8685796 DOI: https://doi.org/10.1155/2016/8685796
C. Lüdecke, M. Roth, W. Yu, U. Horn, J. Bossert, and K. D. Jandt, “Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhe-sion points,” Colloids Surf. B Biointerfaces, vol. 145, pp. 617-625, 2016. https://doi.org/10.1016/j.colsurfb.2016.05.049 DOI: https://doi.org/10.1016/j.colsurfb.2016.05.049
C. Lüdecke, J. Bossert, M. Roth, and K. D. Jandt, “Physical vapor deposited titanium thin films for biomedical applica-tions: Re-producibility of nanoscale surface rough-ness and microbial adhesion properties,” Appl. Surf. Sci., vol. 280, pp. 578-589, 2013. https://doi.org/10.1016/j.apsusc.2013.05.030 DOI: https://doi.org/10.1016/j.apsusc.2013.05.030
K. Harawaza, B. Cousins, P. Roach, and A. Fernandez, “Modification of the surface nanotopography of implant devices: A translational perspective,” Mater. Today Bio, vol. 12, no. 12, art. 100152, 2021. https://doi.org/10.1016/j.mtbio.2021.100152 DOI: https://doi.org/10.1016/j.mtbio.2021.100152
J. Alipal et al., “An updated review on surface functionalisa-tion of titanium and its alloys for implants applications,” Mater. Today Proc., vol. 42, pp. 270-282, 2019. https://doi.org/10.1016/j.matpr.2021.01.499 DOI: https://doi.org/10.1016/j.matpr.2021.01.499
S. Al-Amshawee, M. Y. B. M. Yunus, J. G. Lynam, W. H. Lee, F. Dai, and I. H. Dakhil, “Roughness and wettability of biofilm carriers: A systematic review,” Environ. Tech. In-nov., vol. 21, art. 101233, 2021. https://doi.org/10.1016/j.eti.2020.101233 DOI: https://doi.org/10.1016/j.eti.2020.101233
R. J. Crawford, H. K. Webb, V. K. Truong, J. Hasan, and E. P. Ivanova, “Surface topographical factors influencing bacterial attachment,” Adv. Colloid. Interface Sci., vol. 179, no. 182, pp. 142-149, 2012. https://doi.org/10.1016/j.cis.2012.06.015 DOI: https://doi.org/10.1016/j.cis.2012.06.015
K. Koyama, H. Abe, S. Kawamura, and S. Koseki, “Sto-chastic simulation for death probability of bacterial popu-lation considering variability in individual cell inactivation time and initial number of cells,” Int. J. Food Microbiol., vol. 290, pp. 125-131, 2019. https://doi.org/10.1016/j.ijfoodmicro.2018.10.009 DOI: https://doi.org/10.1016/j.ijfoodmicro.2018.10.009
L. Vepsäläinen, P. Stenberg, P. Pääkkönen, M. Kuittinen, M. Suvanto, and T. A. Pakkanen, “Roughness analysis for textured surfaces over several orders of magnitudes,” Appl. Surf. Sci., vol. 284, pp. 222-228, 2013. https://doi.org/10.1016/j.apsusc.2013.07.085 DOI: https://doi.org/10.1016/j.apsusc.2013.07.085
M. F. Kunrath, “Customized dental implants: Manufactur-ing processes, topography, osseointegration and future perspectives of 3D fabricated implants,” Bioprinting, vol. 20, art. e00107, 2020. https://doi.org/10.1016/j.bprint.2020.e00107 DOI: https://doi.org/10.1016/j.bprint.2020.e00107
M. F. Kunrath, M. S. G. Monteiro, S. Gupta, R. Hubler, and S. D. de Oliveira, “Influence of titanium and zirconia modi-fied surfaces for rapid healing on adhesion and biofilm formation of Staphylococcus epidermidis,” Arch. Oral Biol., vol. 117, no. 117, art. 104824, 2020. https://doi.org/10.1016/j.archoralbio.2020.104824 DOI: https://doi.org/10.1016/j.archoralbio.2020.104824
R. C. Costa et al., “Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifica-tions on bacterial accumulation and polymicrobial infec-tions,” Adv. Colloid. Interface Sci., vol. 298, art. 102551, 2021. https://doi.org/10.1016/j.cis.2021.102551 DOI: https://doi.org/10.1016/j.cis.2021.102551
M. Annunziata et al., “Bacterial adhesion to direct laser metal formed and mildly acid etched implant surfaces,” Surf. Coat. Tech., vol. 328, pp. 390-397, 2017. https://doi.org/10.1016/j.surfcoat.2017.09.011 DOI: https://doi.org/10.1016/j.surfcoat.2017.09.011
V. K. Truong et al., “The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained tita-nium,” Biomaterials, vol. 31, no. 13, pp. 3674-3683, 2010. https://doi.org/10.1016/j.biomaterials.2010.01.071 DOI: https://doi.org/10.1016/j.biomaterials.2010.01.071
A. Jain, N. Kumari, S. Jagadevan, and V. Bajpai, “Surface properties and bacterial behavior of micro conical dimple textured Ti6Al4V surface through micro-milling,” Surf. In-terfaces, vol. 21, no. 21, art. 100714, 2020. https://doi.org/10.1016/j.surfin.2020.100714 DOI: https://doi.org/10.1016/j.surfin.2020.100714
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Martha Patricia Calvo Correa
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la revista Ingeniería e Investigación, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la revista Ingeniería e Investigación en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/ingeinv), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la revista Ingeniería e Investigación para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.