Publicado
Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures
Estudio del comportamiento mecánico y refuerzo del RCSACC tras su exposición a temperaturas elevadas
DOI:
https://doi.org/10.15446/ing.investig.105573Palabras clave:
mechanical properties, rapid calcium sulfoaluminate cement, copper-plated microfilament fibers, shear corrugated fibers, shrinkage (en)propiedades mecánicas, cemento de sulfoaluminato cálcico rápido, fibras de microfilamentos recubiertos de cobre, fibras onduladas de cizallamiento, contracción (es)
Descargas
Rapid calcium sulfoaluminate cement concrete (RCSACC) has received increased attention of late because it can be manufactured with less CO2 emissions than ordinary Portland cement. In previous studies, RCSACC performed poorly when subjected to elevated temperatures, to which fiber-reinforced concrete (FRC) is a potential alternative. This study investigated the impact of incorporating two types of fibers, i.e., copper-plated steel microfilament (CPM) and shear corrugated steel (SC), on the engineering, mechanical, and microstructural features of RCSACC after exposure to elevated temperatures. Pore size distribution, microstructure, and mechanical properties were tested after exposure to temperatures of 100, 200, and 300 °C. The content of each type of fibers represented 1% of the concrete. The results showed that the mechanical properties were affected by the addition of either type of steel fibers. Adding CPM or SC steel fibers could ensure an adequate resistance of RCSACC when exposed to high temperatures, in addition to improving its residual mechanical behavior, spalling resistance, and ductility after heating. Steel fibers contribute to enhancing both mechanical properties and resistance to heating effects. However, adding steel fibers also appears to increase microstructure damage with heat, reduce workability, entrap air and water, and reduce cracking related to drying shrinkage.
Últimamente, el hormigón de cemento sulfoaluminato de calcio rápido (RCSACC) ha recibido una mayor atención porque puede fabricarse con menos emisiones de CO2 que el cemento Portland ordinario. En estudios anteriores, el RCSACC presentó un mal desempeño cuando se sometió a temperaturas elevadas, para lo cual el hormigón reforzado con fibra (FRC) es una potencial alternativa. Este estudio investigó el impacto de la incorporación de dos tipos de fibras, i.e., microfilamento de acero chapado en cobre (CPM) y acero corrugado (SC), en las características de ingeniería, mecánicas y microestructurales del RCSACC tras su exposición a temperaturas elevadas. Se probaron la distribución del tamaño de los poros, la microestructura y las propiedades mecánicas tras la exposición a temperaturas de 100, 200 y 300 °C. El contenido de cada tipo de fibras representaba el 1 % del hormigón. Los resultados mostraron que las propiedades mecánicas se vieron afectadas por la adición de cualquiera de los dos tipos de fibras de acero. La adición de fibras de acero CPM o SC podría garantizar una resistencia adecuada del RCSACC cuando se expone a altas temperaturas, además de mejorar su comportamiento mecánico residual, su resistencia al desconchado y su ductilidad después del calentamiento. Las fibras de acero contribuyen a mejorar tanto las propiedades mecánicas como la resistencia a los efectos del calentamiento. Sin embargo, la adición de fibras de acero también parece aumentar el daño a la microestructura con el calor, reducir la trabajabilidad, atrapar el aire y el agua, y reducir el agrietamiento relacionado con la contracción por secado.
Referencias
ACI Committee (2011). ACI 214R-11 — guide to evaluation of strength test results of concrete. American Concrete Institute.
Abbass, A. A., Abid, S.R., Ali, S. H., Al-Sarray, M. L. J., Murali, G., and Nader, I. A. (2022). Post-high-temperature exposure repeated impact response of steel-fiber-reinforced concrete. Buildings, 12, 1364. https://doi.org/10.3390/buildings12091364
Abdulaziz, A., and Yousef R. A. (2022). Strength, durability and shrinkage behaviours of steel fiber reinforced rubberized con-crete. Construction and Building Materials, 345, 128295. https://doi.org/10.1016/j.conbuildmat.2022.128295
Abdulkader E M., Roland L., and Salem G. N. (2017). Mechani-cal performance of steel fiber reinforced self-compacting concrete in panels. Procedia Engineering, 196, 90-96. https://doi.org/10.1016/j.proeng.2017.07.177
Afroughsabe, V., Biolzi, L., and Ozbakkaloglu, T. (2016). High-performance fiber-reinforced concrete: A review. Journal of Materials Science, 51, 6517-6551. https://doi.org/10.1007/s10853-016-9917-4
Aguilar, M. T. P., Bezerra, A. C. S., De Figueiredo, M. A. L., Melo, P. G., Silva, M. J., Oliveira, S. N., Oliveira, L. L. M. S., Resende, D. S., and Silva, N. J. T. (2016). Evaluation of sample prepara-tion parameters in the compressive strength of cementitious composites. Materials Science Forum, 869, 93-97. https://doi.org/10.4028/www.scientific.net/MSF.869.93
Ahmed N. E. (2021). EgyGene GelAnalyzer4: A powerful image analysis software for one dimensional gel electrophoresis. Journal of Genetic Engineering and Biotechnology, 19, 18. https://doi.org/10.1186/s43141-020-00114-x
Aluko, O. G., Kadir, M. A. A., Yatim, J. M., and Yahya, K. (2020). A review of properties of bio-fibrous concrete exposed to elevated temperatures. Construction and Building Materials, 260, 11967. https://doi.org/10.1016/j.conbuildmat.2020.119671
Amin, M. N., Ahmad, W., Khan, K., and Ahmad, A. (2022). Steel fiber reinforced concrete: A systematic review of the re-search progress and knowledge mapping. Materials, 15, 6155. https://doi.org/10.3390/ma15176155
An, L. H., and Ekkehard F. (2017). Influence of steel fiber con-tent and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete. Construction and Building Materials, 153, 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130
Aravinthan, T., Ferdous, W., Ghabraie, K., Manalo, A., and Van, E G. (2018). Evaluation of an innovative composite railway sleeper for a narrow-gauge track under static load. Journal of Composites for Construction, 2, 04017050-1-13. https://doi.com/10.1061/(ASCE)CC.1943-5614.0000833
Augusto, C. S. B., Elaine, C. S. C., Maria, T. P. A., Priscilla, S. M., Paulo, R. R. S. J., and Paulo, R. C. (2019). Effect of high tem-perature on the mechanical properties of steel fiber-reinforced concrete. Fibers, 7(12),100. https://doi.org/10.3390/fib7120100
Azzabi, M., Banthia, N., and Pigeon, M. (1993). Restrained shrinkage cracking in fiber-reinforced cementitious compo-sites. Materials and Structures, 26, 405-413. https://doi.org/10.1007/BF02472941
Barreto, R. R., Bezerra, A. C. S., Maciel, P. S., Soares, J. P. R. R., Silva Neto, J. T., and Siqueira Corrêa, E. C. (2019). Thin slabs made of high-performance steel fibre-reinforced cementitious composite: Mechanical behaviour, statistical analysis and microstructural investigation. Materials, 20, 3297. https://doi.org/10.3390/ma12203297
Bai, Y., Ferdous, W., Manalo, A., Mendis, P., and Ngo, T. D. (2019). New advancements, challenges and opportunities of multi-storey modular buildings: A state-of-the-art review. Engi-neering Structure, 83, 883-893. https://doi.org/10.1016/j.engstruct.2019.01.061
Bang, Y. L., Jeong-Il C., Se-Eon P., and Yun, Y. K. (2022). Flexural behavior of composite beams of Kagome truss and fiber-reinforced cementitious composites. Construction and Build-ing Materials, 361, 129653. https://doi.org/10.1016/j.conbuildmat.2022.129653
Bibiana, L., Facundo, I., Gonzalo, R., Graciela, G., and Raúl Z. (2017). Steel fibers pull-out after exposure to high tempera-tures and its contribution to the residual mechanical behavior of high strength concrete. Construction and Building Materi-als, 163, 571-585. https://doi.org/10.1016/j.conbuildmat.2017.12.129
Bjegović, D., Baričević, A. R., Pezer, M., Serdar, M., and Štirmer, N. (2015). Shrinkage behaviour of fibre reinforced concrete with recycled tyre polymer fibres. Civil Engineering Applica-tions of Polymer Composites, 2015(1), 145918. https://doi.org/10.1155/2015/145918
Błaszczyński, T., and Przybylska, M. (2015). Steel fibre reinforced concrete as a structural material. Procedia Engineering, 11-12, 44-50 https://doi.org/10.1016/j.proeng.2015.10.037
Chang, K. H., Wang, W., Wang, H. Y., and Wang, S. Y. (2020). Effect of high temperature on the strength and thermal con-ductivity of glass fiber concrete. Construction and Building Materials, 245, 118387. https://doi.org/10.1016/j.conbuildmat.2020.118387
Chalioris, C. E., Kosmidou, P. M. K., and Karayannis, C. G. (2019). Cyclic response of steel fiber reinforced concrete slender beams; An experimental study. Materials, 12(9), 1398. https://doi.org/10.3390/ma12091398
Cheng, X., Che, J., Liu, H., Liu, N., and Zhang, M. (2020). Me-chanical performances of concrete produced with desert sand after elevated temperature. International Journal of Concrete Structures and Materials, 14, 26. https://doi.org/10.1186/s40069-020-00402-3
Cheng, X., Huang, S., Kouadjo, J. J. T., Mukhopadhyay, A. K., and Wang, S. (2020a) Compressive strength of rapid sulfoalu-minate cement concrete exposed to elevated tempera-tures. Ceramics-Silikáty, 64(3), 1-10. https://www.irsm.cas.cz/materialy/cs_content/2020_doi/Tchekwagep_CS_2020_0012.pdf
Cheng, X., Huang, S., Kouadjo, J. J. T., Mukhopadhyay, A. K., and Wang, S. (2020b). Strengths of sulfoaluminate cement concrete and ordinary portland cement concrete after ex-posure to high temperatures. Ceramics-Silikáty, 64(2), 1-9. https://www2.irsm.cas.cz/materialy/cs_content/2020_doi/Tchekwagep_CS_2020_0019.pdf
Cheng, X., Huang, S., Kouadjo, J. J. T., Mukhopadhyay, A. K., and Wang, S. (2021). The impact of extended heat exposure on rapid sulphoaluminate cement concrete up to 120°C. Pe-riodica Polytechnica Civil Engineering, 65(2), 588-607. https://doi.org/10.3311/PPci.17122
Dong D., Lingchao L., Na C., Piqi Z., Xuecheng W., Yongbo, H., and Zixu Z. (2022). Ternesite-calcium sulfoaluminate cement: Preparation and hydration. Construction and Building Materi-als, 344,128187. https://doi.org/10.1016/j.conbuildmat.2022.128187
Ferdous, W., Ghazlan, A., Mendis, P., Manalo, A., Ngo, T. D., and Nguyen, K. T. Q. (2018). Effect of fire-retardant ceram powder on the properties of phenolic-based GFRP composites. Com-posites Part B Engineering, 155, 414-424. https://doi.org/10.1016/j.compositesb.2018.09.032
Gashti, S. H., Sadrmomtazi, A., and Tahmouresi B. (2020). Resid-ual strength and microstructure of fiber reinforced self-compacting concrete exposed to high temperatures. Con-struction and Building Materials, 230, 116969. https://doi.org/10.1016/j.conbuildmat.2019.116969
Hong, S. G., Kang, S. H., Lee, J. H., and Moon, J. (2017). Micro-structural investigation of heat-treated ultra-high-performance concrete for optimum production. Materials, 10(9), 1106. https://doi.org/10.3390/ma10091106
Jacek, S., Konrad, A. S., Łukasz, K., Mariusz, S., and Sebastian, M. (2021). Impact of elevated temperatures on strength proper-ties and microstructure of calcium sulfoaluminate paste. Ma-terials, 14(22), 6751. https://doi.org/10.3390/ma14226751
Kaczmarek, Ł., Miszczak, S., Sodol, K. A., Stegliński, M., and Szer, J. (2021). The Influence of elevated temperatures on strength properties and microstructure of calcium sulfoaluminate paste. Materials, 14, 6751. https://doi.org/10.3390/ma14226751
Kohoutková, A., and Novák, J. (2017). Fiber reinforced con-crete exposed to elevated temperature. Materials Science and Engineering, 1, 012045. https://doi.org/10.1088/1757-899X/246/1/012045
Li, L. (2019). Stress-rupture of fiber-reinforced ceramic-matrix composites with stochastic loading at intermediate tempera-tures. Part I: Theoretical analysis. Materials, 12(19), 435-458. https://doi.org/10.1007/s41779-020-00549-y
Li, Y., Nguyen, H. T. N., and Tan, K. H. (2021). Shear behavior of fiber-reinforced concrete hollow-core slabs under elevated temperature. Construction and Building Materials, 275, 121362. https://doi.org/10.1016/j.conbuildmat.2020.121362
Li, Y., Tan, K. H., and Yang, E. (2020). Flexural behavior of ultra-high performance hybrid fiber reinforced concrete at the ambient and elevated temperature. Construction and Build-ing Materials, 250, 118487. https://doi.org/10.1016/j.conbuildmat.2020.118487
Mehta, P. K., and Monteiro, P. J. M. (2006). Concrete: Micro-structure, properties, and materials (3rd ed). McGraw-Hill.
Michels, J., Scherer, J., and Zwicky, D. (2016). Structural strengthening of concrete with fiber reinforced cementitious matrix (FRCM) at ambient and elevated temperature—Recent investigations. Advances in Structural Engineering, 17(12), 1785-1799. https://doi.org/10.1260/1369-4332.17.12.1785
Tanyildizi, H., and Yonar, Y. (2016). Mechanical properties of geopolymer concrete containing polyvinyl alcohol fiber ex-posed to high temperature. Construction and Building Mate-rials, 216, 381-387. https://doi.org/10.1016/j.conbuildmat.2016.09.001
Venkatesh, K., and Wasim, K. (2011). Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cement and Concrete Research, 41(11), 1112-1122. https://doi.org/10.1016/j.cemconres.2011.06.012
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Jean Jacques Kouadjo Tchekwagep, Yiping Qui, Shifeng Huang, Shoude Wang, Xin Cheng
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la revista Ingeniería e Investigación, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la revista Ingeniería e Investigación en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/ingeinv), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la revista Ingeniería e Investigación para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.