Publicado

2024-12-01

Heuristics-Based Energy Demand Forecasting with Scarce Data in the Department of Huila, Colombia

Pronóstico de la Demanda de Energía Basado en Heurística con Datos Escasos en el Departamento del Huila, Colombia

DOI:

https://doi.org/10.15446/ing.investig.109551

Palabras clave:

demand forecasting, energy, heuristics, scarce data (en)
pronóstico de la demanda, energía, heurística, datos escasos (es)

Autores/as

Within the framework of the energy transition, electrical distribution grid operators require effective tools to predict the demand of individual users. These tools are necessary for an adequate planning of future generation resources and infrastructure modernization. However, understanding future electricity needs poses a significant challenge, especially in emerging economies, where historical data are manually collected on a monthly or bi-monthly basis and exhibit a significant amount of missing information. In response to the above, this work proposes a novel heuristics-based method for medium-term energy demand forecasting with scarce data. Qualitative and quantitative information was abstracted into a mathematical model representing the trend and noise components of historical energy consumption observations. In addition, external factors were considered as an additional layer for the mathematical model, in order to account for events that could not be foreseen by merely using the dataset. A train-test data split was proposed to iteratively search for the best parameters to predict electricity demand with respect to different categorical divisions of users (social stratum, rural or urban location, and municipality). For testing and validation, real historical data were used, as provided by the regional distribution system operator (DSO) of the department of Huila, Colomba. The results suggest a trade-off between accuracy and computational intensity, as well as the fact that a non-categorical approach leads to the algorithm with the best performance (average absolute error of 1.61%) at a low computational cost.

En el marco de la transición energética, los operadores de redes de distribución eléctrica requieren herramientas efectivas para predecir la demanda de usuarios individuales. Estas herramientas son necesarias para un planeamiento adecuado de los recursos futuros de generación y la modernización de la infraestructura. Sin embargo, entender las necesidades futuras de electricidad constituye un desafı́o significativo, especialmente en economı́as emergentes donde los datos históricos son recolectados manualmente en perı́odos mensuales o bimensuales y presentan una cantidad significativa de información faltante. En respuesta a esto, se propone un novedoso método basado en heurı́stica para el pronóstico de la demanda de energı́a en el mediano plazo con datos escasos. Se abstrajo información cualitativa y cuantitativa en un modelo matemático que representa las componentes de tendencia y ruido en observaciones históricas de consumo de energı́a. Adicionalmente, se consideraron factores externos como capa adicional para el modelo matemático, en aras de dar cuenta de eventos que no podrı́an ser previstos solamente con el conjunto de datos. Se propuso una división de datos de entrenamiento y prueba con el fin de buscar iterativamente los mejores parámetros para predecir la demanda de electricidad respecto a diferentes divisiones categóricas de usuarios (estrato social, ubicación rural o urbana y municipio). Para realizar pruebas y validaciones, se utilizaron datos históricos reales proporcionados por el operador del sistema de distribución (OSD) regional del departamento del Huila, Colombia. Los resultados sugieren que hay una compensación entre precisión e intensidad computacional, y que un enfoque no categórico resulta en el algoritmo con un mejor desempeño (error absoluto promedio de 1.61 %) y un bajo costo computacional.

Referencias

Allen, M., and Isaacson, E. (2019). Numerical analysis for applied science. Wiley. https://books.google.be/books?id=PpB9cjOxQAQC.

Amber, K. P., Aslam, M. W., Mahmood, A., Kousar, A., Younis, M. Y., Akbar, B., Hussain, S. H. (2017). Energy consumption forecasting for university sector buildings. Enegries, 10(10). https://doi.org/10.3390/en10101579

Bennett, D. A. (2001). How can i deal with missing data in my study? Australian and New Zealand Journal of Public Health, 25(5), 464-469. https://doi.org/10.1111/j.1467-842X.2001.tb00294.x Biel, K., and Glock, C. H. (2016). Systematic literature review of decision support models for energy-efficient production planning. Computers & Industrial Engineering, 101, 243-259. https://oi.org/10.1016/j.cie.2016.08.021

Bimenyimana, S., and Asemota, G. N. O. (2018). Traditional vs smart electricity metering systems: A brief overview. Journal of Marketing and Consumer Research, 46, 1-7. https://www.iiste.org/Journals/index.php/JMCR/article/view/42505/43773. (Accessed: 2023-03-02)

Bunn, D., and Farmer, E. (1985). Comparative models for electrical load forecasting. Wiley. https://www.osti.gov/biblio/6256333. (Accessed: 2023-03-02)

Capitanescu, F., Ochoa, L. F., Margossian, H., and Hatziargyriou, N. D. (2015). Assessing the potential of network reconfiguration to improve distributed generation hosting capacity in active distribution systems. IEEE Transactions on Power Systems, 30(1), 346-356. https://doi.org/10.1109/TPWRS.2014.2320895

Chica-Olmo, J., Sánchez, A., and Sepúlveda-Murillo, F. H. (2020). Assessing colombia’s policy of socio-economic stratification: An intra-city study of self-reported quality of life. Cities, 97, 102560. https://www.sciencedirect.com/science/article/pii/S0264275119312995. https://doi.org/10.1016/j.cities.2019.102560

Cuenca, J. J., and Hayes, B. P. (2022). Non-bias allocation of export capacity for distribution network planning with high distributed energy resource integration. IEEE Transactions on Power Systems, 37(4), 3026-3035. https://doi.org/10.1109/TPWRS.2021.3124999

Cuenca, J. J., Jamil, E., and Hayes, B. P. (2023). Revenue-based allocation of electricity network charges for future distribution networks. IEEE Transactions on Power Systems, 38(2), 1728-1738. https://doi.org/10.1109/TPWRS.2022.3176186

Dong, Y., and Peng, C.-Y. J. (2013, May 14). Principled missing data methods for researchers. SpringerPlus, 2(1), 222. https://doi.org/10.1186/2193-1801-2-222

ElectroHuila S.A. E.S.P. (2021). Hackatón OpitaChallenge. https://reto.electrohuila.com.co/. (Accessed: 2023-03-02)

Escalera, A., Hayes, B., and Prodanović, M. (2018). A survey of reliability assessment techniques for modern distribution networks. Renewable and Sustainable Energy Reviews, 91, 344-357. https://doi.org/10.1016/j.rser.2018.02.031

Ghoddusi, H., Creamer, G. G., and Rafizadeh, N. (2019). Machine learning in energy economics and finance: A review. Energy Economics, 81, 709-727. https://doi.org/10.1016/j.eneco.2019.05.006

Gnatyuk, V. I., Polevoy, S. A., Kivchun, O. R., and Lutsenko, D. V. (2020, apr). Applying the potentiating procedure for optimal management of power consumption of technocenose. IOP Conference Series: Materials Science and Engineering, 837(1), 012001. https://doi.org/10.1088/1757-899X/837/1/012001

Hemmati, R., Hooshmand, R.-A., and Taheri, N. (2015). Distribution network expansion planning and dg placement in the presence of uncertainties. International Journal of Electrical Power & Energy Systems, 73, 665-673. https://doi.org/10.1016/j.ijepes.2015.05.024

Honarmand, M. E., Hosseinnezhad, V., Hayes, B., Shafie-Khah, M., and Siano, P. (2021). An overview of demand response: From its origins to the smart energy community. IEEE Access, 9, 96851-96876. https://doi.org/10.1109/ACCESS.2021.3094090 Hong,

T., and Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review. International Journal of Forecasting, 32(3), 914-938. https://doi.org/10.1016/j.ijforecast.2015.11.011

Klyuev, R. V., Morgoev, I. D., Morgoeva, A. D., Gavrina, O. A., Martyushev, N. V., Efremenkov, E. A., and Mengxu,

Q. (2022). Methods of forecasting electric energy consumption: A literature review. Energies, 15(23). https://doi.org/10.3390/en15238919

Lindsey, J. K. (2004). Statistical analysis of stochastic processes in time. Cambridge University Press. https://doi.org/10.1017/CBO9780511617164

Medar, R., Rajpurohit, V. S., and Rashmi, B. (2017). Impact of training and testing data splits on accuracy of time series forecasting in machine learning [conference paper]. In 2017 international conference on computing, communication, control and automation (iccubea). https://doi.org/10.1109/ICCUBEA.2017.8463779

Mehigan, L., Zehir, M. A., Cuenca, J. J., Sengor, I., Geaney, C., and Hayes, B. P. (2022). Synergies between low carbon technologies in a large-cale mv/lv distribution system. IEEE Access, 10, 88655-88666. https://doi.org/10.1109/ACCESS.2022.3199872

Meng, M., Niu, D., and Sun, W. (2011). Fore-casting monthly electric energy consumption using feature extraction. Energies, 4(10), 1495–1507. https://doi.org/10.3390/en4101495

Migliavacca, G., Rossi, M., Siface, D., Marzoli, M., Ergun, H., Rodrı́guez-Sánchez, R., . . . Morch, A. (2021). The innovative flexplan grid planning methodology: How storage and flexible resources could help in de-bottlenecking the european system. Energies, 14(4).

https://doi.org/10.3390/en14041194

Ochoa, L. F., Dent, C. J., and Harrison, G. P. (2010). Distribution network capacity assessment: Variable dg and active networks. IEEE Transactions on Power Systems, 25(1), 87-95. https://doi.org/10.1109/TPWRS.2009.2031223

Schafer, J. L. (1999). Multiple imputation: A primer. Statistical Methods in Medical Research, 8(1), 3–15. https://doi.org/10.1191/096228099671525676

Shumilova, G., Gottman, N., and Starceva, T. (2008). Forecasting of electrical loads in the operational management of electric power systems based on neural network structures. KNC UrO RAS: Syktyvkar, Russia, 85.

vom Scheidt, F., Medinová, H., Ludwig, N., Richter, B., Staudt, P., and Weinhardt, C. (2020). Data analytics in the electricity sector. a quantitative and qualitative literature review. Energy and AI, 1, 100009. https://doi.org/10.1016/j.egyai.2020.100009

Wei, N., Li, C., Peng, X., Zeng, F., and Lu, X. (2019). Conventional models and artificial intelligence-based models for energy consumption forecasting: A review. Journal of Petroleum Science and Engineering, 181, 106187. https://doi.org/10.1016/j.petrol.2019.106187

Yuce, B., Mourshed, M., and Rezgui, Y. (2017). A smart forecasting approach to district energy management. Energies, 10(8). https://doi.org/10.3390/en10081073

Cómo citar

APA

Cuenca, J., Palacios-Castro, D. y García, R. (2024). Heuristics-Based Energy Demand Forecasting with Scarce Data in the Department of Huila, Colombia. Ingeniería e Investigación, 44(3), e109551. https://doi.org/10.15446/ing.investig.109551

ACM

[1]
Cuenca, J., Palacios-Castro, D. y García, R. 2024. Heuristics-Based Energy Demand Forecasting with Scarce Data in the Department of Huila, Colombia. Ingeniería e Investigación. 44, 3 (dic. 2024), e109551. DOI:https://doi.org/10.15446/ing.investig.109551.

ACS

(1)
Cuenca, J.; Palacios-Castro, D.; García, R. Heuristics-Based Energy Demand Forecasting with Scarce Data in the Department of Huila, Colombia. Ing. Inv. 2024, 44, e109551.

ABNT

CUENCA, J.; PALACIOS-CASTRO, D.; GARCÍA, R. Heuristics-Based Energy Demand Forecasting with Scarce Data in the Department of Huila, Colombia. Ingeniería e Investigación, [S. l.], v. 44, n. 3, p. e109551, 2024. DOI: 10.15446/ing.investig.109551. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/109551. Acesso em: 12 ene. 2025.

Chicago

Cuenca, Juan, Diego Palacios-Castro, y Rodolfo García. 2024. «Heuristics-Based Energy Demand Forecasting with Scarce Data in the Department of Huila, Colombia». Ingeniería E Investigación 44 (3):e109551. https://doi.org/10.15446/ing.investig.109551.

Harvard

Cuenca, J., Palacios-Castro, D. y García, R. (2024) «Heuristics-Based Energy Demand Forecasting with Scarce Data in the Department of Huila, Colombia», Ingeniería e Investigación, 44(3), p. e109551. doi: 10.15446/ing.investig.109551.

IEEE

[1]
J. Cuenca, D. Palacios-Castro, y R. García, «Heuristics-Based Energy Demand Forecasting with Scarce Data in the Department of Huila, Colombia», Ing. Inv., vol. 44, n.º 3, p. e109551, dic. 2024.

MLA

Cuenca, J., D. Palacios-Castro, y R. García. «Heuristics-Based Energy Demand Forecasting with Scarce Data in the Department of Huila, Colombia». Ingeniería e Investigación, vol. 44, n.º 3, diciembre de 2024, p. e109551, doi:10.15446/ing.investig.109551.

Turabian

Cuenca, Juan, Diego Palacios-Castro, y Rodolfo García. «Heuristics-Based Energy Demand Forecasting with Scarce Data in the Department of Huila, Colombia». Ingeniería e Investigación 44, no. 3 (diciembre 1, 2024): e109551. Accedido enero 12, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/109551.

Vancouver

1.
Cuenca J, Palacios-Castro D, García R. Heuristics-Based Energy Demand Forecasting with Scarce Data in the Department of Huila, Colombia. Ing. Inv. [Internet]. 1 de diciembre de 2024 [citado 12 de enero de 2025];44(3):e109551. Disponible en: https://revistas.unal.edu.co/index.php/ingeinv/article/view/109551

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

25

Descargas

Los datos de descargas todavía no están disponibles.