Reduction of power line interference in electrocardiographic signals by dual Kalman filtering
Reducción de interferencia de línea de potencia en señales electrocardiográficas mediante el filtro dual de Kalman
DOI:
https://doi.org/10.15446/ing.investig.v27n3.14848Palabras clave:
Kalman filtering, power line reduction, dual state and parameter estimation, delta operator, electro-cardiogram (en)filtro de Kalman, reducción de línea de potencia, transformada delta, electrocardiograma (es)
Descargas
This paper presents a filter for reducing powerline interference in electrocardiographic signals (ECG), based on dual parameter and state estimation using with a Kalman filter. Two models were used to represent power-line interference and ECG signal. Both models were combined to simulate the ECG signal whose state was estimated for separating the ECG signal from the interference. The proposed algorithm was fine-tuned and compared using a set of tests relying on the QT arrhythmia database. Tuning tests were done for tracking clean ECG; these results were used for setting the algorithm’s parameters for later filtering tests. Exhaustive filtering tests were carried out on artificially corrupted database registers for given signal to noise ratios; performance curves were thus obtained, leading to comparing the proposed algorithm with other filtering methods. The proposed algorithm was compared to an recursive infinite impulse response filter (IIR) and a Kalman filter based on a simpler model. A filtering algorithm was thus obtained which is robust for changes in interference amplitude and keeps these properties for different types of ECG morphologies.
En este artículo se presenta el desarrollo de un filtro para la reducción de la interferencia de línea de potencia en señales electrocardiográficas (ECG), basado en estimación dual de parámetros y de estado, empleando la filtración Kalman, en el cual se consideran modelos independientes entre la interferencia de línea de potencia y la señal ECG. Ambos modelos son combinados para simular la señal ECG medida sobre la que se realiza la estimación de estado para separar la señal de la interferencia. El algoritmo propuesto es sintonizado y comparado en un conjunto de pruebas realizadas sobre la base de datos QT de electrocardiografía. Inicialmente se hacen pruebas de sintonización del algoritmo para el rastreo de la señal ECG limpia, cuyos resultados son utilizados después para las pruebas de filtrado. Luego se llevan a cabo pruebas exhaustivas sobre la base de datos QT en la filtración de interferencia de línea de potencia, la cual ha sido introducida artificialmente en los registros, para una relación de señal a ruido (SNR) dada, obteniendo así curvas del desempeño del algoritmo, que permiten a su vez comparar con el desempeño de otros algoritmos de filtración, a saber, un filtro notch recursivo de respuesta infinita al impulso (IIR) y un filtro de Kalman, basado en un modelo más simple para la señal ECG. Como resultado, se demuestra que el algoritmo de filtrado obtenido es robusto a los cambios de amplitud de la interferencia; además, conserva sus propiedades para los diferentes tipos de morfologías de señales ECG normales y patológicas.
Referencias
Ahlstrom, M., Tompkins, J., Digital filters for real time ECG signal processing using microprocessors., IEEE Transactions on Biomedical Engineering, 32, 9, 1985, pp. 708-713. DOI: https://doi.org/10.1109/TBME.1985.325589
Aström, K. J., Wittenmark, B., Computer-Controlled Systems: Theory and Design, third edn., Prentice Hall Information and System Sciences, 1997.
Dotsinsky, I., Daskalov, I., Accuracy of 50(Hz) interference subtraction from an electrocardiogram., Medicine, Biology, Engineering and Computing, 34, 1996, pp. 489-494. DOI: https://doi.org/10.1007/BF02523857
Er, M. H., Designing notch filter with controlled null width., IEEE Signal Processing, 24, 1991, pp. 319-329. DOI: https://doi.org/10.1016/0165-1684(91)90108-U
Hamilton, P., A comparison of adaptive and nonadaptive filters for the reduction of powerline interference in the ECG., IEEE Transactions on Biomedical Engineering ,43, 1996, 105-109. DOI: https://doi.org/10.1109/10.477707
Haykin, S., Kalman Filtering and Neural Networks., first edn, Wiley Interscience, 2001. DOI: https://doi.org/10.1002/0471221546
Huhta, J., Webster, J., 60(Hz) interference in electro cardiography., IEEE Transactions on Biomedical Engineering, 20, 1973, pp. 12-28. DOI: https://doi.org/10.1109/TBME.1973.324169
Jang, Y. K., Chicharo, F., Adaptive IIR comb filter for harmonic signal cancellation., Int. J. Electronics, 75, 1993, pp. 241-250. DOI: https://doi.org/10.1080/00207219308907103
Levkov, C., Michov, G., Ivanov, R., Daskalov, I., Subtraction of 50(HZ) interference form the electrocardiogram., Medicine, Biology, Engineering and Computing, 22, 1984, pp. 371-373. DOI: https://doi.org/10.1007/BF02442109
Middleton, R. H., Goodwin, G., Improved finite word length characteristics in digital control using delta operators, IEEE AC-31, 1986. DOI: https://doi.org/10.1109/TAC.1986.1104162
Middleton, R. H., Goodwin, G., Digital Control and Estimation: A unified Approach, first edn., Prentice-Hall International, Inc., 1990.
Mneimneh, M., Yaz, E., Johnson, M., Povinelli, R., An adaptive Kalman filter for removing baseline wandering in ECG signals., Computers in Cardiology, 33, 2006, pp. 253-256.
Nelson, A., Nonlinear estimation of noisy time-series by dual Kalman filtering methods., PhD thesis, Oregon Graduate Institute of Science and Technology, 2000.
Pei, S., Tseng, C., Elimination of AC interference in electrocardiogram using IIR notch filter with transient su ppression., IEEE Transactions on Biomedical Engineering, 42, 1995, pp. 1128-1132. DOI: https://doi.org/10.1109/10.469385
Sameni, R., Shamsollahi, M., Jutten, C., Multi-channel electrocardiogram denoising using a bayesian filtering framework., Computers in Cardiology, 33, 2006, pp. 185-188.
Sörnmo, L., Laguna, P., Bioelectrical Signal Processing in Cardiac and Neurological Applications., Elsevier Academic Press, 2005. DOI: https://doi.org/10.1016/B978-012437552-9/50003-9
Tarvainen, M., Georgiadis, S., Karjalainen, P., Time varying analysis of heart rate variability with Kalman smoother algorithm., 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005. DOI: https://doi.org/10.1109/IEMBS.2005.1617032
Wan, E., Nelson, A., Dual Kalman filtering methods for nonlinear prediction, estimation and smoothing., Advances in Neural Information Processing Systems, 1997.
Ziarani, A., Konrad, A., A nonlinear adaptive method of elimination of power line interference in ECG signals., IEEE Transactions on Biomedical Engineering, 49, 6, 2002, pp. 540-547. DOI: https://doi.org/10.1109/TBME.2002.1001968
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Roshan M. Bodile, T. V. K. Hanumantha Rao. (2021). Computational Vision and Bio-Inspired Computing. Advances in Intelligent Systems and Computing. 1318, p.175. https://doi.org/10.1007/978-981-33-6862-0_15.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2007 Luis David Avendaño Valencia, Luis Enrique Avendaño, José María Ferrero, Germán Castellanos Domínguez

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la revista Ingeniería e Investigación, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la revista Ingeniería e Investigación en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/ingeinv), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la revista Ingeniería e Investigación para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.