EVALUATING THE NUCLEAR PROPERTIES OF 120–130Xe ISOTOPES
EVALUACIÓN DE LAS PROPIEDADES NUCLEARES DE LOS ISÓTOPOS DE 120−130Xe
DOI:
https://doi.org/10.15446/mo.n70.114834Keywords:
IBM-1, Xe isotopes, SEF, NEE, Energy levels (en)IBM-1, SEF, NEE, isótopos de Xe, niveles de energía (es)
Downloads
Positive-parity states of 120–130Xe isotopes were calculated based on the interacting boson model 1 (IBM-1), Semi-Experimental Formula (SEF), and New Empirical Equation (NEE). The calculated results are compared to experimental energy levels, specifically GS, β, and γ bands, in addition to reduced B(E2) transition probabilities. IBM-1, SEF, and NEE accurately represent the comparable energy levels of the GS, γ, and β bands for 120–130Xe. However, IBM-1 exhibits greater deviations at higher energy levels. The present calculations replicate the experimental results of 120–130Xe. The potential energy surface (PES) is a nuclear property that determines the ultimate form of nuclei. PES plotting reveals that the 120–130Xe isotopes are deformed and have a γ–unstable limit.
Se calcularon los estados de paridad positiva de los isótopos 120–130Xe basándose en el modelo de bosón interactivo 1 (IBM-1), la Fórmula Semiexperimental (SEF) y la Nueva Ecuación Empírica (NEE). Los resultados calculados se comparan con los niveles de energía experimentales, específicamente con las bandas GS, β y γ, además de con las probabilidades de transición reducidas B(E2). El IBM-1, la SEF y la NEE representan con precisión los niveles de energía comparables de las bandas GS, γ y β para el 120–130Xe. Sin embargo, el IBM-1 muestra mayores desviaciones en los niveles de energía más altos. Los cálculos presentes replican los resultados experimentales de 120–130Xe. La superficie de energía potencial (PES) es una propiedad nuclear que determina la forma final de los núcleos. El trazado de la PES revela que los isótopos de 120–130Xe están deformados y tienen un límite γ inestable.
References
P. Cejnar, J. Jolie, and et al., Rev. Mod. Phys. 82, 2155 (2010). https://doi.org/https://doi.org/10.1103/RevModPhys.82.2155
R. Kumar, S. Sharma, and J. Gupta, Armenian J. Phys. 3, 150 (2010). https://www.semanticscholar.org/paper/CHARACTER-OF-QUASI-BANDS-IN-150-Sm-USING-IBM-Kumar-Sharma/d5ac61b3fb5658248edc10a73ce2b158fdc3c188
R. Casten and E. McCutchan, J. Phys G: Nucl. Part. Phys. 34, R285 (2007). https://doi.org/https://doi.org/10.1088/0954-3899/34/7/R01
B. Rawat and P. Chattopadhyay, Pramana - J. Phys. 53, 911 (1999). https://link.springer.com/article/10.1007/s12043-999-0125-5
V. Werner, H. Meise, and et al., Nuclear Physics A 692, 451 (2001). https://linkinghub.elsevier.com/retrieve/pii/S0375947401006558 DOI: https://doi.org/10.1016/S0375-9474(01)00655-8
B. Saha, A. Dewald, and et al., Phys. Rev. C 70, 034313 (2004). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.70.034313
G. Rainovski, N. Pietralla, and et al., Phys. Lett. B 683, 11 (2010). https://linkinghub.elsevier.com/retrieve/pii/S0370269309014294 DOI: https://doi.org/10.1016/j.physletb.2009.12.007
N. Turkan and I. Maras, Math. Comput. Appl. 16, 467 (2011). https://www.mdpi.com/2297-8747/16/2/467 DOI: https://doi.org/10.3390/mca16020467
Z. P. Li, T. Nikšić, and et al., Phys. Rev. C 81, 034316 (2010). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.81.034316
L. Coquard, G. Rainovski, and et al., Phys. Rev. C 83, 044318 (2011). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.83.044318
H. Khudher, A. Hasan, and F. Sharrad, Ukr. J. Phys. 62, 152 (2018). https://doi.org/https://doi.org/10.15407/ujpe62.02.0152
M. Jafarizadeh, N. Fouladi, and et al., Braz. J. Phys. 43, 34 (2013). https://link.springer.com/article/10.1007/s13538-013-0116-3
H. H. Khudher, A. K. Hasan, and F. I. Sharrad, Chinese J. Phys. 55, 1754 (2017). https://linkinghub.elsevier.com/retrieve/pii/S0577907317303817 DOI: https://doi.org/10.1016/j.cjph.2017.07.011
J. B. Gupta and J. H. Hamilton, Phys. Rev. C 104, 054325 (2021). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.104.054325
K. Nomura, R. Rodríguez-Guzmán, and L. M. Robledo, Phys. Rev. C 104, 054320 (2021). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.104.054320
A. A. Sabry, Kuwait J. Sci. 50, 204 (2023). https://www.sciencedirect.com/science/article/pii/S2307410823000809?via%3Dihub
H. El-Gendy, Nucl. Phys. A 1006, 122117 (2021). https://linkinghub.elsevier.com/retrieve/pii/S0375947420304462 DOI: https://doi.org/10.1016/j.nuclphysa.2020.122117
A. Mohammed-Ali, R. Alkhayat, and et al., Rev. Mex. Fís. 68, 060401 (2022). https://rmf.smf.mx/ojs/index.php/rmf/article/view/6039 DOI: https://doi.org/10.31349/RevMexFis.68.060401
A. Al-Nuaimi, R. Alkhayat, and et al., Karbala Int. J. Mod. Sci. 8, 391 (2022). https://kijoms.uokerbala.edu.iq/home/vol8/iss3/9/ DOI: https://doi.org/10.33640/2405-609X.3249
M. A. Al-Jubbori, H. H. Kassim, and et al., Nucl. Phys. A 955, 101 (2016). https://www.sciencedirect.com/science/article/abs/pii/S0375947416301488?via%3Dihub DOI: https://doi.org/10.1016/j.nuclphysa.2016.06.005
M. A. Al-Jubbori, F. S. Radhi, and et al., Nucl. Phys. A 971, 35 (2018). https://linkinghub.elsevier.com/retrieve/pii/S0375947418300125 DOI: https://doi.org/10.1016/j.nuclphysa.2018.01.011
H. Kassim, A. Elbndag, and et al., Momento 69, 101 (2024). https://revistas.unal.edu.co/index.php/momento/article/view/112749 DOI: https://doi.org/10.15446/mo.n69.112749
F. Ali, M. Al-Jubbori, and et al., Momento 68, 86 (2024). https://revistas.unal.edu.co/index.php/momento/article/view/109589 DOI: https://doi.org/10.15446/mo.n68.109589
F. X. Xu, C. S. Wu, and J. Y. Zeng, Phys. Rev. C 40, 2337 (1989). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.40.2337
K. Kitao, Y. Tendow, and A. Hashizume, Nucl. Data Sheets 96, 241 (2002). https://www.sciencedirect.com/science/article/abs/pii/S0090375202900128?via%3Dihub DOI: https://doi.org/10.1006/ndsh.2002.0012
T. Tamura, Nucl. Data Sheets 108, 455 (2007). https://www.sciencedirect.com/science/article/abs/pii/S0090375207000208?via%3Dihub DOI: https://doi.org/10.1016/j.nds.2007.02.001
J. Katakura and Z. Wu, Nucl. Data Sheets 109, 1655 (2008). https://linkinghub.elsevier.com/retrieve/pii/S0090375208000458 DOI: https://doi.org/10.1016/j.nds.2008.06.001
H. Iimura, J. Katakura, and S. Ohya, Nucl. Data Sheets 180, 1 (2022). https://linkinghub.elsevier.com/retrieve/pii/S0090375222000011 DOI: https://doi.org/10.1016/j.nds.2022.02.001
Z. Elekes and J. Timar, Nucl. Data Sheets 129, 191 (2015). https://linkinghub.elsevier.com/retrieve/pii/S0090375215000472 DOI: https://doi.org/10.1016/j.nds.2015.09.002
B. Singh, Nucl. Data Sheets 96, 1 (2002). https://www.sciencedirect.com/science/article/abs/pii/S0090375202900104?via%3Dihub DOI: https://doi.org/10.1006/ndsh.2002.0010
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.







