NUCLEAR STRUCTURE OF 182,184Hg ISOTOPES BY IBM-1 AND IBM-2 MODELS
ESTRUCTURA NUCLEAR DE LOS ISÓTOPOS 182,184 Hg MEDIANTE LOS MODELOS IBM-1 E IBM-2
DOI:
https://doi.org/10.15446/mo.n70.116188Keywords:
IBM-1, IBM-2, energy level, B(E2), 182Hg, 184Hg, potencial energy (en)IBM-1, IBM-2, B(E2), 182Hg, 184Hg, nivel de energía, energía potencial (es)
Downloads
The potential energy surface (PES), reduced transition strength B(E2), and three types of bands (g-band, γ-band, and β-band) were computed for the 182Hg and 184Hg nuclei employing the IBM-1 and IBM-2 models. The computed energy levels of these nuclei exhibit certain points of agreement with the data that were previously measured. An examination of experimental data reveals that the precision of the calculations performed by IBM-1 is preferable to that of IBM-2, specifically with regard to low energy levels of ground and γ-states. On the contrary, IBM-2 calculations depict the higher states of ground and other states in comparison to IBM-1. The strengths of quadruple electromagnetic transitions in these nuclei were established by the IBM-1 and IBM-2 models and compared with prior measured data. The experimental value of B(E2) is reproduced by IBM-2 more accurately than IBM-1. IBM-1 is used to analyze the potential energy surfaces (PES) of 182,184Hg nuclei, which exhibit SU(3)-O(6) dynamical symmetry.
La superficie de energía potencial (PES), la fuerza de transición reducida B(E2) y tres tipos de bandas (banda g, banda γ y banda β) se calcularon para los núcleos 182Hg y 184Hg utilizando los modelos IBM-1 e IBM-2. Los niveles de energía calculados de estos núcleos muestran ciertos puntos de concordancia con los datos previamente medidos. Un análisis de los datos experimentales revela que la precisión de los cálculos realizados con IBM-1 es superior a la de IBM-2, específicamente con respecto a los niveles de energía bajos del estado base y los estados γ. Por el contrario, los cálculos con IBM-2 representan mejor los estados más altos del estado base y otros estados en comparación con IBM-1. Las intensidades de las transiciones electromagnéticas cuadrupolares en estos núcleos se determinaron con los modelos IBM-1 e IBM-2 y se compararon con datos experimentales previos. El valor experimental de B(E2) es reproducido por IBM-2 con mayor precisión que por IBM-1. IBM-1 se utiliza para analizar las PES de los núcleos 182,184Hg, que exhiben simetría dinámica SU(3)-O(6).
References
A. Arima and et al., Phys. Lett. B 66, 205 (1977).
https://www.sciencedirect.com/science/article/abs/pii/0370269377908607?via%3Dihub
T. Otsuka, , and et al., Phys. Lett. B 76, 139 (1978).
https://www.sciencedirect.com/science/article/abs/pii/0370269378902605?via%3Dihub
G. L. Long and et al., J. Phys. G: Nucl. Part. Phys. 21, 331 (1995).
https://iopscience.iop.org/article/10.1088/0954-3899/21/3/008
F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.052502
A. Sevrin, K. Heyde, and J. Jolie, Phys. Rev. C 36, 2621 (1987).
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.36.2621
M. A. Al-Jubbori and et al., Chinese Phys. C 41, 084103 (2016).
https://iopscience.iop.org/article/10.1088/1674-1137/41/8/084103
K. Heyde, J. Jolie, and et al., Nucl. Phys. A 586, 1 (1995).
https://linkinghub.elsevier.com/retrieve/pii/037594749400721X
M. Al-Jubbori and et al., Indian J. Phys. 94, 379 (2020).
https://link.springer.com/article/10.1007/s12648-019-01461-3
R. Julin and et al., J. Phys. G: Nucl. Part. Phys. 27, R109 (2001).
https://iopscience.iop.org/article/10.1088/0954-3899/27/7/201
M. Siciliano and et al., Phys. Rev. C 102, 014318 (2020).
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.102.014318
V. V. Prassa and K. Karakatsanis, Bulg. J. Phys. 48, 495 (2021).
https://www.bjp-bg.com/paper1.php?id=1483
J. García-Ramos and K. Heyde, EPJ Web Conf. 93, 01004 (2015).
M. A. Al-Jubbori, Ukr. J. Phys. 62, 936 (2017).
https://doi.org/https://doi.org/10.15407/ujpe62.11.0936
H. T. Fortune, Phys. Rev. C 100, 044303 (2019).
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.100.044303
M. Stryjczyk and et al., Phys. Rev. C 108, 014308 (2023).
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.108.014308
F. Iachello and A. Arima, The Interacting Boson Model (Cambrige University, 1987).
https://www.cambridge.org/core/books/interacting-boson-model/44C4D2C85F7D66DBA3D2003E88672A35
A. M. Al-Nuaimi and et al., KIJOMS 8, 391 (2022).
https://kijoms.uokerbala.edu.iq/home/vol8/iss3/9/
H. H. Kassim and et al., Momento 69, 101 (2024).
https://revistas.unal.edu.co/index.php/momento/article/view/112749
A. Arima and F. Iachello, Ann. Phys. 111, 201 (1978).
https://linkinghub.elsevier.com/retrieve/pii/0003491678902282
M. A. Al-Jubbori and et al., Int. J. Mod. Phys. E 27, 1850035 (2018).
https://www.worldscientific.com/doi/abs/10.1142/S0218301318500350
H. H. Khudher and et al., Ukr. J. Phys. 62, 152 (2017).
https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018716
A. Arima and F. Iachello, Ann. Phys. 99, 253 (1976).
https://linkinghub.elsevier.com/retrieve/pii/000349167690097X
F. Iachello, Phys. Rev. Lett. 44, 772 (1980).
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.44.772
A. Mohammed-Ali and et al., Rev. Mex. Fís. 68, 060401 1 (2022).
https://rmf.smf.mx/ojs/index.php/rmf/article/view/6039
I. Mamdouh and M. Al-Jubbori, Indian J. Phys. 89, 1085 (2015).
https://link.springer.com/article/10.1007/s12648-015-0679-7
S. Nair, A. Ansari, and L. Satpathy, Phys. Lett. B 71, 257 (1977).
https://linkinghub.elsevier.com/retrieve/pii/0370269377902088
F. M. Ali and et al., Momento 68, 86 (2024).
https://revistas.unal.edu.co/index.php/momento/article/view/109589
G. Puddu, O. Scholten, and T. Otsuka, Nucl. Phys. A 348, 109 (1980).
https://www.sciencedirect.com/science/article/abs/pii/0375947480905485?via%3Dihub
M. A. Al-Jubbori and et al., Phys. Atom. Nuclei 82, 201 (2019).
https://link.springer.com/article/10.1134/S1063778819030049
T. Otsuka and N. Yoshida, User’s manual of the program NPBOS. Report JAERI-M 85-094 1985).
National Nuclear Data Center. Brookhaven National Laboratory (Consulted in 2024).
B. Singh, Nucl. Data Sheets 130, 21 (2015).
https://www.sciencedirect.com/science/article/abs/pii/S0090375215000563?via%3Dihub
[33] C. M. Baglin, Nucl. Data Sheets 111, 275 (2010).
https://linkinghub.elsevier.com/retrieve/pii/S0090375210000189
J. Batchelder, A. Hurst, and M. Basunia, Nucl. Data Sheets 183, 1 (2022).
https://www.sciencedirect.com/science/article/abs/pii/S009037522200031X?via%3Dihub
J. E. Garc´ıa-Ramos and K. Heyde, Phys. Rev. C 89, 014306 (2014).
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.89.014306
J. M. Yao, M. Bender, and P.-H. Heenen, Phys. Rev. C 87, 034322 (2013).
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.87.034322
L. Pr´ochniak and S. G. Rohozi´nski, J. Phys. G: Nucl. Part. Phys. 36, 123101 (2009).
https://iopscience.iop.org/article/10.1088/0954-3899/36/12/123101
M. Najem and M. Al-Jubbori, J. Educ. Sci. 30, 175 (2021).
https://iopscience.iop.org/article/10.1088/0954-3899/36/12/123101
F. Ali, M. Al-Jubbori, and A. Elbndaq, J. Educ. Sci. 32, 1 (2023).
10.33899/rjs.2009.40098
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.