Publicado
Production of a phenolic-rich extract of aroeira honey and characterization of its antimicrobial, antitumoral and antioxidant activities
Producción de un extracto rico en fenoles de miel de aroeira y caracterización de sus actividades antimicrobiana, antitumoral y antioxidante
Produção de um extrato rico em fenólicos do mel de aroeira e caracterização de suas atividades antimicrobiana, antitumoral e antioxidante
DOI:
https://doi.org/10.15446/rcciquifa.v52n1.109396Palabras clave:
Astronium urundeuva (M. Allemão) engl., salmonella, glioblastoma, oxidative stress, arbovirus, coronavirus (en)Astronium urundeuva (M. Allemão) engl., Salmonella, glioblastoma, estrés oxidativo, arbovírus, coronavírus (es)
Astronium urundeuva (M. Allemão) engl., salmonella, glioblastoma, estresse oxidativo, arbovírus, coronavírus (pt)
Descargas
Objective: a phenolic-rich extract of Astronium urundeuva honey (PhEAH) was
produced and its pharmacological proprieties were determined. Method: PhEAH
was prepared using a solid-phase extraction column. Next, antibacterial and antifungal
activities were evaluated by broth microdilution method and the antioxidant
effect was investigated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. Urethral
catheter sensitized with PhEAH were produced and its anti-adhesive and anti-biofilm
effect determined. Finally, antitumoral and antiviral activities were studded using
3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) test. Results:
PhEAH showed an elevated total phenol concentration (PhEAH: 18.7±0.4 mg GA/g vs. fresh honey: 0.99±0.005 mg GA/g). Although PhEAH did not show significant
antifungal and antiviral effects, it was moderately active against Gram-negative bacilli
(Klebsiella aerogenes, K. pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and
Enterobacter cloacae) and showed increased antibacterial activity against salmonellosis
pathogens (Salmonella Typhimurium and Salmonella Enteritidis). PhEAH-impregnated
urethral catheters inhibited the growth of various pathogenic bacteria and
impaired the ability of P. aeruginosa to colonize and adhere to it. In addition to its antimicrobial
activity, PhEAH presented antioxidant properties and reduced the viability
of human glioblastoma cells. Conclusion: in conclusion, our study shows that PhEAH
contains large amounts of phenolic compounds, which are associated with its antibacterial,
anti-adhesive, antioxidant, and antitumor effects.
Objetivo: se produjo un extracto rico en fenoles de miel de Astronium urundeuva
(PhEAH) y se determinaron sus propiedades farmacológicas. Métodos: PhEAH se
preparó utilizando una columna de extracción en fase sólida. Luego, se evaluaron las
actividades antibacteriana y antifúngica mediante el método de microdilución en caldo
y se investigó el efecto antioxidante mediante el ensayo de 2,2-difenil-1-picrilhidrazilo
(DPPH). Se fabricaron catéteres uretrales sensibilizados con PhEAH y se determinó
su efecto antiadhesivo y antibiofilm. Finalmente, las actividades antitumoral y antiviral
se evaluaron mediante la prueba de bromuro de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio
(MTT). Resultados: PhEAH mostró una alta concentración de fenoles
totales (PhEAH: 18,7±0,4 mg AG/g vs. miel fresca: 0,99±0,005 mg AG/g). Aunque
PhEAH no mostró efectos antifúngicos y antivirales significativos, fue moderadamente
activo contra los bacilos Gram-negativos (Klebsiella aerogenes, K. pneumoniae,
Proteus mirabilis, Pseudomonas aeruginosa y Enterobacter cloacae) y mostró una mayor
actividad antibacteriana contra los patógenos de la salmonelosis (Salmonella Typhimurium
y Salmonella enteriditis). Los catéteres uretrales impregnados con PhEAH
inhibieron el crecimiento de varias bacterias patógenas y afectaron la capacidad de P.
aeruginosa para colonizar y adherirse a ella. Además de su actividad antimicrobiana, PhEAH mostró propiedades antioxidantes y redujo la viabilidad de las células de glioblastoma
humano. Conclusión: en conclusión, nuestro estudio muestra que PhEAH
contiene grandes cantidades de compuestos fenólicos, los cuales están asociados con
sus efectos antibacterianos, antiadhesivos, antioxidantes y antitumorales.
Objetivos: um extrato rico em fenólicos do mel de Astronium urundeuva (PhEAH)
foi produzido e suas propriedades farmacológicas foram determinadas. Métodos:
o PhEAH foi preparado usando uma coluna de extração em fase sólida. Em
seguida, as atividades antibacteriana e antifúngica foram avaliadas pelo método
de microdiluição em caldo e o efeito antioxidante foi investigado pelo ensaio de
2,2-difenil-1-picrilhidrazil (DPPH). Cateteres uretrais sensibilizados com PhEAH
foram produzidos e seu efeito antiadesivo e antibiofilme determinado. Finalmente,
as atividades antitumoral e antiviral foram avaliadas usando o teste de brometo
de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazólio (MTT). Resultados: PhEAH
mostrou uma concentração de fenol total elevada (PhEAH: 18,7±0,4 mg GA/g
vs. mel fresco: 0,99±0,005 mg GA/g). Embora o PhEAH não tenha apresentado
efeitos antifúngicos e antivirais significativos, foi moderadamente ativo contra
bacilos Gram-negativos (Klebsiella aerogenes, K. pneumoniae, Proteus mirabilis,
Pseudomonas aeruginosa e Enterobacter cloacae) e mostrou atividade antibacteriana
aumentada contra patógenos de salmonelose (Salmonella Typhimurium e Salmonella
Enteritidis). Cateteres uretrais impregnados com PhEAH inibiram o crescimento
de várias bactérias patogênicas e prejudicaram a capacidade de P. aeruginosa de
colonizar e aderir a ela. Além de sua atividade antimicrobiana, PhEAH apresentou
propriedades antioxidantes e reduziu a viabilidade de células de glioblastoma
humano. Conclusão: em conclusão, nosso estudo mostra que o PhEAH contém
grandes quantidades de compostos fenólicos, que estão associados aos seus efeitos
antibacteriano, antiadesivo, antioxidante e antitumoral.
Referencias
D. Cianciosi, T.Y. Forbes-Hernández, S. Afrin, M. Gasparrini, P. Reboredo-Rodriguez,
P.P. Manna, J. Zhang, L.B. Lamas, S.M. Flórez, P.A. Toyos, J.L. Quiles,
F. Giampieri, M. Battino, Phenolic compounds in honey and their associated
health benefits: A review, Molecules, 23(9), 2322 (2018). DOI: doi.org/10.3390/
molecules23092322
A.A. Machado De-Melo, L.B. de Almeida-Muradian, M.T. Sancho, A. Pascual-
Maté, Composition and properties of Apis mellifera honey: A review, J.
Apicult. Res., 57(1), 5-37 (2018). DOI: doi.org/10.1080/00218839.2017.133
F.R. Viana, L.S. do Carmo, E.M.A.F. Bastos, Antibacterial activity of Aroeira honeys
produced in Minas-Gerais against bacteria of clinical importance, Acta Scient.,
Biol. Sci., 40, 36766 (2018). DOI: doi.org/10.4025/actascibiolsci.v40i1.36766 DOI: https://doi.org/10.4025/actascibiolsci.v40i1.36766
F.J. Leyva-Jimenez, J. Lozano-Sanchez, I. Borras-Linares, M.L. Cadiz-Gurrea,
E. Mahmoodi-Khaledi, Potential antimicrobial activity of honey phenolic compounds
against Gram positive and Gram negative bacteria, Lebenson. Wiss. Technol.,
, 236-245 (2019). DOI: doi.org/10.1016/J.LWT.2018.11.015
R.L.P. Lianda, L.D. Sant’Ana, A. Echevarria, R.N. Castro, Antioxidant activity
and phenolic composition of Brazilian honeys and their extracts, J. Braz. Chem.
Soc., 23, 618-627 (2012). DOI: doi.org/10.1590/S0103-50532012000400006
D. Sateriale, S. Facchiano, R. Colicchio, C. Pagliuca, E. Varricchio, M. Paolucci,
M.G. Volpe, P. Salvatore, C. Pagliarulo, In vitro synergy of polyphenolic extracts from honey, myrtle and pomegranate against oral pathogens, S. mutans and
R. dentocariosa, Front. Microbiol., 11, 1465 (2020). DOI: doi.org/10.3389/ DOI: https://doi.org/10.3389/fmicb.2020.01465
fmicb.2020.01465
P. Yap, M.F.A. Bakar, H. Lim, D. Carrier, Antibacterial activity of polyphenol-
rich extract of selected wild honey collected in Sabah, Malaysia, J. Apicult.
Res., 54, 163-172 (2015). DOI: doi.org/10.1080/00218839.2016.1151633
W.G. Lima, J.C.M. Brito, M.E. de Lima, A.C.S.T. Pizarro, M.A.M. de M.
Vianna, M.C. de Paiva, D.C.S. de Assis, V.N. Cardoso, S.O.A. Fernandes, A
short synthetic peptide, based on LyeTx I from Lycosa erythrognatha venom,
shows potential to treat pneumonia caused by carbapenem-resistant Acinetobacter
baumannii without detectable resistance, J. Antibiotics, 74, 425-434 (2021). DOI: https://doi.org/10.1038/s41429-021-00421-6
DOI: doi.org/10.1038/s41429-021-00421-6
W.G. Lima, J.C.M. Brito, V.N. Cardoso, S.O.A. Fernandes, In-depth characterization
of antibacterial activity of melittin against Staphylococcus aureus and use
in a model of non-surgical MRSA-infected skin wounds, Eur. J. Pharm. Sci., 156,
(2021). DOI: doi.org/10.1016/j.ejps.2020.105592
M.C. Paiva, A.M.A. Nascimento, I.L.B.C. Camargo, C.I. Lima-Bittencourt,
R.M.D. Nardi, The first report of the qnrB19, qnrS1 and aac(6’)-Ib-cr genes
in urinary isolates of ciprofloxacin-resistant Escherichia coli in Brazil, Mem.
Inst. Oswaldo Cruz, 107, 687-689 (2012). DOI: doi.org/10.1590/S0074- DOI: https://doi.org/10.1590/S0074-02762012000500018
American Type Culture Collection (ATCC), n.d. Candida albicans (Robin)
Berkhout ATCC ® 10231TM. URL: https://www.atcc.org/products/all/10231.
aspx, accessed December 1, 2021.
R. Dulbecco, Production of plaques in monolayer tissue cultures by single particles
of an animal virus, Proc. Natl. Acad. Sci. U. S. A., 38, 747-752 (1952). DOI: DOI: https://doi.org/10.1073/pnas.38.8.747
doi.org/10.1073/pnas.38.8.747
H. Sahin, R. Aliyazicioglu, O. Yildiz, S. Kolayli, A. Innocenti, C.T. Supuran,
Honey, pollen, and propolis extracts show potent inhibitory activity against the
zinc metalloenzyme carbonic anhydrase, J. Enzyme Inhib. Med. Chem., 26, 440-
(2011). DOI: doi.org/10.3109/14756366.2010.503610
V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Analysis of total phenols
and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods Enzymol., 299, 152-178 (1999). DOI: doi.org/10.1016/S0076- DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
(99)99017-1
Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial
Susceptibility Tests for Bacteria That Grow Aerobically, 11 ed., Wayne (PA), 2018,
Vol. 38, M07.
Clinical and Laboratory Standards Institute, Reference Method for Broth Dilution
Antifungal Susceptibility Testing of Yeasts, 7 ed., Wayne (PA), 2017, Vol. 37, M27.
W.G. Lima, J.C.M. Brito, W.S. da Cruz Nizer, Bee products as a source of promising
therapeutic and chemoprophylaxis strategies against COVID-19 (SARSCoV-
, Phyther. Res., 35(2), 743-750 (2020). DOI: doi.org/10.1002/ptr.6872
M.D. Mansouri, T.B. Boone, R.O. Darouiche, Comparative assessment of antimicrobial
activities of antibiotic-treated penile prostheses, Eur. Urol., 56, 1039- DOI: https://doi.org/10.1016/j.eururo.2008.12.020
(2009). DOI: doi.org/10.1016/j.eururo.2008.12.020
J.K.T. de Sousa, J.P.A. Haddad, A.C. de Oliveira, C.D. Vieira, S.G. dos Santos, In
vitro activity of antimicrobial-impregnated catheters against biofilms formed by
KPC-producing Klebsiella pneumoniae, J. Appl. Microbiol., 127(4), 1018-1027
(2019). DOI: doi.org/10.1111/jam.14372
S. Roy, P. Chaurvedi, A. Chowdhary, Evaluation of antiviral activity of essential
oil of Trachyspermum Ammi against Japanese encephalitis virus, Pharmacognosy
Res., 7, 263-267 (2015). DOI: doi.org/10.4103/0974-8490.157977 DOI: https://doi.org/10.4103/0974-8490.157977
S. Samarghandian, M.H. Boskabady, S. Davoodi, Use of in vitro assays to assess
the potential antiproliferative and cytotoxic effects of saffron (Crocus sativus L.)
in human lung cancer cell line, Pharmacogn. Mag., 6, 309-314 (2010). DOI: doi. DOI: https://doi.org/10.4103/0973-1296.71799
org/10.4103/0973-1296.71799
M. dos Santos, T.R. Teixeira, F.R.D.S. Santos, W.G. Lima, A.C. Ferraz, N.L. Silva,
F.J. Leite, J.M. Siqueira, W. Luyten, A.H.F. de Castro, J.C. de Magalhães, J.M.S.
Ferreira, Bauhinia holophylla (Bong.) Steud. leaves-derived extracts as potent
anti-dengue serotype 2, Nat. Prod. Res., 35(16), 2804-2809 (2019). DOI: doi. DOI: https://doi.org/10.1080/14786419.2019.1669030
org/10.1080/14786419.2019.1669030
F.R.S. Santos, D.A.F. Nunes, W.G. Lima, D. Davyt, L.L. Santos, A.G. Taranto,
J.M.S. Ferreira, Identification of Zika virus NS2B-NS3 protease inhibitors by
structure-based virtual screening and drug repurposing approaches, J. Chem. Inf.
Model., 60(2), 731-737 (2020). DOI: doi.org/10.1021/acs.jcim.9b00933
G. Teixeira de Oliveira, J.M. Siqueira Ferreira, J.M. Lima, L. Ferreira Alves,
J.M. Duarte-Almeida, L.A.R.S. Lima, Phytochemical characterisation and bioprospection
for antibacterial and antioxidant activities of Lippia alba Brown ex
Britton & Wilson (Verbenaceae), Nat. Prod. Res. 32, 723-731 (2018). DOI: doi. DOI: https://doi.org/10.1080/14786419.2017.1335727
org/10.1080/14786419.2017.1335727
S. Yamamoto, Prevention and treatment of complicated urinary tract infection,
Urol. Sci., 27(4), 186-189 (2016). DOI: doi.org/10.1016/j.urols.2016.07.001
I.C.F.R. Ferreira, E. Aires, J.C.M. Barreira, L.M. Estevinho, Antioxidant activity
of Portuguese honey samples: Different contributions of the entire honey and
phenolic extract, Food Chem., 114, 1438-1443 (2009). DOI: doi.org/10.1016/J. DOI: https://doi.org/10.1016/j.foodchem.2008.11.028
FOODCHEM.2008.11.028 DOI: https://doi.org/10.1088/1126-6708/2008/02/028
V.R. Mendes-Oliveira, M.C. Paiva, W.G. Lima, Plasmid-mediated colistin resistance
in Latin America and Caribbean: A systematic review, Travel Med. Infect.
Dis., 31, 101459 (2019). DOI: doi.org/10.1016/j.tmaid.2019.07.015
D.C. Vieira, W.G. Lima, M.C. de Paiva, Plasmid-mediated quinolone resistance
(PMQR) among Enterobacteriales in Latin America: A systematic review, Mol.
Biol. Rep., 47, 1471-1483 (2020). DOI: doi.org/10.1007/s11033-019-05220-9 DOI: https://doi.org/10.1007/s11033-019-05220-9
A.K. Thabit, J.L. Crandon, D.P. Nicolau, Antimicrobial resistance: impact on
clinical and economic outcomes and the need for new antimicrobials, Expert
Opin. Pharmacother., 16, 159-177 (2015). DOI: doi.org/10.1517/14656566.2
993381
U.S.A. Food & Drug Administration (FDA), Foodborne Pathogens. URL
https://www.fda.gov/food/outbreaks-foodborne-illness/foodborne-pathogens,
accessed April 11, 2021.
J.R. Kurtz, J.A. Goggins, J.B. McLachlan, Salmonella infection: interplay
between the bacteria and host immune system, Immunology Letters, 190, 42-50 DOI: https://doi.org/10.1016/j.imlet.2017.07.006
(2017). DOI: doi.org/10.1016/J.IMLET.2017.07.006
D.V.T. Nair, K. Venkitanarayanan, A.K. Johny, Antibiotic-resistant salmonella
in the food supply and the potential role of antibiotic alternatives for control,
Foods, 7(10), 167 (2018). DOI: doi.org/10.3390/FOODS7100167
J.R. Perfect, The antifungal pipeline: a reality check, Nat. Rev. Drug Discov., 16, DOI: https://doi.org/10.1038/nrd.2017.46
-616 (2017). DOI: doi.org/10.1038/nrd.2017.46
M.L. Rodrigues, J.D. Nosanchuk, Fungal diseases as neglected pathogens: A
wake-up call to public health officials, PLoS Negl. Trop. Dis., 14, e0007964
(2020). DOI: doi.org/10.1371/JOURNAL.PNTD.0007964
D.J. Gubler, Human arbovirus infections worldwide, Ann. N. Y. Acad. Sci., 951, DOI: https://doi.org/10.1111/j.1749-6632.2001.tb02681.x
-24 (2006). DOI: doi.org/10.1111/j.1749-6632.2001.tb02681.x
R.M. Donlan, Biofilms: Microbial life on surfaces, Emerg. Infect. Dis., 8(9), 881- DOI: https://doi.org/10.3201/eid0809.020063
(2002). DOI: doi.org/10.3201/eid0809.020063
T.K. Wood, S.J. Knabel, B.W. Kwan, Bacterial persister cell formation and
dormancy, Appl. Environ. Microbiol., 79(23), 7116-7121 (2013). DOI: doi. DOI: https://doi.org/10.1128/AEM.02636-13
org/10.1128/AEM.02636-13
D. Piljic, H. Porobic-Jahic, D. Piljic, S. Ahmetagic, R. Jahic, Chateter-associated
urinary tract infections in adults, Mater. Sociomed., 25(3), 182-186 (2013). DOI: https://doi.org/10.5455/msm.2013.25.182-186
DOI: doi.org/10.5455/msm.2013.25.182-186
S.M. Jacobsen, D.J. Stickler, H.L.T. Mobley, M.E. Shirtliff, Complicated catheter-
associated urinary tract infections due to Escherichia coli and Proteus
mirabilis, Clin. Microbiol. Rev., 21(1), 26-59 (2008). DOI: doi.org/10.1128/ DOI: https://doi.org/10.1128/CMR.00019-07
CMR.00019-07
G. Pizzino, N. Irrera, M. Cucinotta, G. Pallio, F. Mannino, V. Arcoraci, F.
Squadrito, D. Altavilla, A. Bitto, Oxidative stress: Harms and benefits for
human health, Oxid. Med. Cell. Longev., 2017, 8416763 (2017). DOI: doi.
org/10.1155/2017/8416763
M. Rinaldi, M. Caffo, L. Minutoli, H. Marini, R.V. Abbritti, F. Squadrito, V.
Trichilo, A. Valenti, V. Barresi, D. Altavilla, M. Passalacqua, G. Caruso, ROS and
brain gliomas: An overview of potential and innovative therapeutic strategies,
Int. J. Mol. Sci., 17(6), 984 (2016). DOI: doi.org/10.3390/IJMS17060984
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Douglas Galhardo, Alessandra Fernandes Gonçalves Benites, Daiani Rodrigues Moreira, Vagner de Alencar Arnaut de Toledo. (2025). Health Benefits of Honey and Propolis - Scientific Evidence and Medicinal Uses [Working Title]. https://doi.org/10.5772/intechopen.1009782.
2. Victor M. M. de Souza, Géssica E. do N. Costa, Rodrigo F. dos S. Silva, Ricardo M. Ramos, Ézio R. A. de Sá. (2024). In Silico Investigation of the Constituents of Aroeira Honey (Astronium urundeuva) and the Binding Affinity with Important Proteins of M. leprae and M. tuberculosis. Molecular Modeling Connect, 1(1), p.1. https://doi.org/10.69709/MolModC.2024.113103.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13