Publicado

2020-01-01

Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review

Timol, mentol y eucaliptol como agentes para el control microbiológico en cavidad bucal: una revisión exploratoria

DOI:

https://doi.org/10.15446/rcciquifa.v49n1.87006

Palabras clave:

Oral health, terpenes, phytochemicals (en)
Salud bucal, terpenos, fitoquímicos (es)

Autores/as

Dental plaque is a complex environment that maintains a balance with certain microbial communities; however, this microhabitat can be disturbed by some endogenous species causing disease. An exploratory systematic review was carried out using the PubMed, Scopus, Lilacs, and Science Direct databases, identifying that the thymol, menthol, and eucalyptol compounds present varying antimicrobial activity, intra- and interspecies discordance, and a strong antimicrobial intensity on Aggregatibacter actinomycetemcomitans, Candida albicans, Candida dubliniensis, Enterococcus faecalis, Escherichia coli, Lactobacillus plantarum, and Streptococcus mutans, indicating that these phytochemicals can be considered broad-spectrum antimicrobial substances, with an effect on microorganisms linked to oral diseases.

La placa dental es un ambiente complejo que mantiene un equilibrio con determinadas comunidades microbianas; sin embargo, este microhábitat puede ser perturbado por algunas especies endógenas causando enfermedad. Se realizó una revisión sistemática exploratoria empleando las bases de datos Pubmed, Scopus, Lilacs y Science Direct y se identificó que los compuestos timol, mentol y eucaliptol presentan actividad antimicrobiana variable, discordancias intra e inter-especie y una intensidad antimicrobiana fuerte sobre Aggregatibacter actinomycetemcomitans, Candida albicans, Candida dubliniensis, Enterococcus faecalis, Escherichia coli, Lactobacillus plantarum and Streptococcus mutans; indicando que estos fitoquímicos pueden ser consideradas como sustancias antimicrobianas de amplio espectro, con efecto sobre microorganismos relacionados con enfermedades bucales.

Referencias

P. Marsh, D. Head, D. Devine, Ecological approaches to oral biofilms: Control without killing, Caries Res., 49, 46-54 (2015).

World Health Organization (WHO), Oral health. URL: https://www.who.int/news-room/fact-sheets/detail/oral-health, accessed August 2019.

Ministerio Nacional de Salud y Protección Social (MINSALUD). IV estudio nacional de salud bucal (ENSAB). URL: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENSAB-IV-Situacion-Bucal-Actual.pdf, accessed January 2019.

P. Kolenbrander, Oral microbial communities: Biofilms, interactions, and genetic systems, Annu. Rev. Microbiol., 54, 413-437 (2000).

P. Kalesinskas, T. Kačergius, A. Ambrozaitis, V. Pečiulienė, D. Ericson, Reducing dental plaque formation and caries development. A review of current methods and implications for novel pharmaceuticals, Stomatol. Balt. Dent. Maxillofac. J., 16, 44-52 (2014).

N.C.C. Silva, A. Fernandes Júnior, Biological properties of medicinal plants: A review of their antimicrobial activity, J. Venom. Anim. Toxins Incl. Trop. Dis., 16, 402-413 (2010).

G. Lang, G. Buchbauer, A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review, Flavour Fragr. J., 27, 13-39 (2012).

A. Bouyahya, F.E. Guaouguaou, N. Dakka, Y. Bakri, Pharmacological activities and medicinal properties of endemic Moroccan medicinal plant Origanum compactum (Benth) and their main compounds, Asian Pacific J. Trop. Dis., 7, 628-640 (2017).

I.A. Freires, C. Denny, B. Benso, S.M. Alencar, P.L. Rosalen, Antibacterial activity of essential oils and their isolated constituents against cariogenic bacteria: A systematic review, Molecules, 20, 7329-7358 (2015).

F. Nazzaro, F. Fratianni, R. Coppola, V. De Feo, Essential oils and antifungal activity, Pharmaceuticals, 10, 2-20 (2017).

L.S. Ramírez, D.M. Castaño, Metodologías para evaluar in vitro la actividad antibacteriana de compuestos de origen vegetal, Sci. Tech. Año XV., 42, 263-268 (2009).

N.S. Radulovic, P.D. Blagojevic, Z.Z. Stojanovic-Radic, N.M. Stojanovic, Antimicrobial plant metabolites: Structural diversity and mechanism of action, Curr. Med. Chem., 20, 932-952 (2013).

M. Balouiri, M. Sadiki, S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review, J. Pharm. Anal., 6, 71-79 (2016).

M. Erriu, F.M.G. Pili, E. Tuveri, D. Pigliacampo, A. Scano, C. Montaldo, V. Piras, G. Denotti, A. Pilloni, V. Garau, G. Orrù, Oil essential mouthwashes antibacterial activity against Aggregatibacter actinomycetemcomitans: A comparison between antibiofilm and antiplanktonic effects, Int. J. Dent., 2013, 1-5 (2013).

S.K. Filoche, K. Soma, C.H. Sissons, Antimicrobial effects of essential oils in combination with chlorhexidine digluconate, Oral Microbiol. Immunol., 20, 221-225 (2005).

C. Vlachojannis, S. Chrubasik-Hausmann, E. Hellwig, A. Al-Ahmad, A Preliminary investigation on the antimicrobial activity of Listerine®, its components, and of mixtures thereof, Phytother. Res., 29, 1590-1594 (2015).

S. Bhattacharya, S. Virani, M. Zavro, G. Haas, Inhibition of Streptococcus mutans and other oral streptococci by hop (Humulus lupulus L.) constituents, Econ. Bot., 57, 118-125 (2003).

M.Y. Memar, P. Raei, N. Alizadeh, M.A. Aghdam, H.S. Kafil, Carvacrol and thymol: Strong antimicrobial agents against resistant isolates, Rev. Med. Microbiol., 28, 63-68 (2017).

A. Marchese, I.E. Orhan, M. Daglia, R. Barbieri, A. Di Lorenzo, S.F. Nabavi, O. Gortzi, M. Izadi, S. Nabavi, Antibacterial and antifungal activities of thymol: A brief review of the literature, Food Chem., 210, 402-414 (2016).

National Center for Biotechnology Information-NCBI. PubChem Compound Database. URL: https://www.ncbi.nlm.nih.gov/pccompound/, accessed February 2019.

A. Giweli, A.M. Džamic, M. Soković, M.S. Ristić, P.D. Marin, Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya, Molecules, 17, 4836-4850 (2012).

C. Kohlert, G. Schindler, R.W. Marz, G. Abel, B. Brinkhaus, H. Derendorf, E. Gräfe, M. Veit, Systemic availability and pharmacokinetics of thymol in humans, J. Clin. Pharmacol., 42, 731-737 (2002).

M. Llana-Ruiz-Cabello, D. Gutierrez-Praena, S. Pichardo, F.J. Moreno, J.M. Bermudez, S. Aucejo, A.M. Cameán, Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2, Food Chem. Toxicol., 64, 281-290 (2014).

I. Bassanetti, M. Carcelli, A. Buschini. S. Montalbano, G. Leonardi, P. Pelagatti, G. Tosi, P. Massi, L. Fiorentini, D. Rogolino, Investigation of antibacterial activity of new classes of essential oils derivatives, Food Control, 73, 606-612 (2017).

M.F. Nagoor Meeran, H. Javed, H. Al Taee, S. Azimullah, S. Ojha, Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development, Front. Pharmacol., 8, 1-34 (2017).

M. Davoodi, G. Kavoosi, R. Shakeri, Preparation and characterization of potato starch-thymol dispersion and film as potential antioxidant and antibacterial materials, Int. J. Biol. Macromol., 104, 173-179 (2017).

Food and Drug Administration - FDA. Substances Added to Food (formerly EAFUS). URL: https://bit.ly/2RW9U8L, accessed February 2019.

M. Höferl, G. Buchbauer, L. Jirovetz, E. Schmidt, A. Stoyanova, Z. Denkova, A. Slavchev, M. Geissler, Correlation of antimicrobial activities of various essential oils and their main aromatic volatile constituents, J. Essent. Oil Res., 21(5), 459-463 (2009).

T-H. Wang, S-M. Hsia, C-H. Wu, S-Y. Ko, M.Y. Chen, Y-H. Shih, T-M.;Shieh, L-C. Chuang, C-Y. Wu, Evaluation of the antibacterial potential of liquid and vapor phase phenolic essential oil compounds against oral microorganisms, PLoS One, 11(9), 1-17 (2016).

M. Soković, J. Glamočlija, P. Marin, D. Brkić, L. J. L. D. Griensven, Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model, Molecules, 15(11), 7532-7546 (2010).

N. Mandras, A. Nostro, J. Roana, D. Scalas, G. Banche, V. Ghisetti, S. Del Re, G. Fucale, A.M. Cuffini, W. Tullio, Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida, BMC Complement. Altern. Med., 16(1), 1-7 (2016).

L.A. Vale-Silva, M.J. Goncalves, C. Cavaleiro, L. Salgueiro, E. Pinto, Antifungal activity of the essential oil of thymus x viciosoi against Candida, Cryptococcus, Aspergillus and Dermatophyte species, Planta Med., 76(9), 882-888 (2010).

D. Trombetta, F. Castelli, M.G. Sarpietro, V. Venuti, M. Cristani, C. Daniele, A. Saija, G. Mazzanti, G. Bisignano, Mechanisms of antibacterial action of three monoterpenes, Antimicrob. Agents Chemother., 49(6), 2474-2478 (2005).

N. Samber, A. Khan, A. Varma, N. Manzoor, Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components, Pharm Biol., 53(10), 1496-1504 (2015).

M. Mahboubi, N. Kazempour, M. Valian, Antimicrobial activity of natural respitol-B and its main components against poultry microorganisms, Pakistan J. Biol. Sci., 16(19), 1065-1068 (2013).

M. Bhowal, M. Gopal, Eucalyptol: Safety and pharmacological profile, RGUHS J. Pharm. Sci., 5(4), 125-131 (2016).

H. Zengin, A.H. Baysal, Antibacterial and Antioxidant Activity of Essential Oil Terpenes against Pathogenic and Spoilage-Forming Bacteria and Cell Structure-Activity Relationships Evaluated by SEM Microscopy, Molecules.;19(11):17773-17798 (2014).

R. Manchado, S. Tamames, M. López, L. Mohedano, M. D´Agostino, J. Veiga, Revisiones sistemáticas exploratorias, Med. Segur. Trab., 55(216), 12-19 (2009).

R. Armstrong, B. Hall, J. Doyle, E. Waters, “Scoping the scope” of a Cochrane review, J. Public Health, 33(1), 147-150 (2011).

M.S. Ali-Shtayeh, M.A. Al-Nuri, R.M. Yaghmour, Y.R. Faidi, Antimicrobial activity of Micromeria nervosa from the Palestinian area, J. Ethnopharmacol., 58(3), 143-147 (1997).

A. Ahmad, A. Khan, F. Akhtar, S. Yousuf, I. Xess, L.A. Khan, N. Manzoor, Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida, Eur. J. Clin. Microbiol. Infect. Dis., 30(1), 41-50 (2011).

A. Ahmad, A. Khan, S. Yousuf, L.A. Khan, N. Manzoor, Proton translocating ATPase mediated fungicidal activity of eugenol and thymol, Fitoterapia, 81(8), 1157-1162 (2010).

H. Rostami, M. Kazemi, S. Shafiei, Antibacterial activity of Lavandula officinalis and Melissa officinalis against some human pathogenic bacteria, Asian J. Biochem., 7(3), 133-142 (2012).

C.C. Liolios, O. Gortzi, S. Lalas, J. Tsaknis, I. Chinou, Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity, Food Chem., 112(1), 77-83 (2009).

L.J. Lai, J.M. Chiu, R.Y. Chiou, Fresh preservation of alfalfa sprouts and mushroom slices by soaking with thymol and resveratrol solutions, Food Sci. Nutr., 5(3), 776-783 (2017).

A. Chan, D. Ager, I. Thompson, Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors, J. Microbiol. Methods, 93(3), 209-217 (2013).

P. Nagle, Y. Pawar, A. Sonawane, S. Bhosale, D. More, Docking simulation, synthesis and biological evaluation of novel pyridazinone containing thymol as potential antimicrobial agents, Med. Chem. Res., 23(2), 918-926 (2014).

S. Ćavar, M. Maksimović, M.E. Šolić, A. Jerković-Mujkić, R. Bešta, Chemical composition and antioxidant and antimicrobial activity of two Satureja essential oils, Food Chem., 111(3), 648-653 (2008).

S.K. Doke, J.S. Raut, S. Dhawale, S.M. Karuppayil, Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin, J. Gen. Appl. Microbiol., 60(5), 163-168 (2014).

J. Raut, R.B. Shinde, N.M. Chauhan, S.M. Karuppayil, Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans, Biofouling, 29(1), 87-96 (2013).

J.Y. Chung, J.H. Choo, M.H. Lee, J.K. Hwang, Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans, Phytomedicine, 13(4), 261-266 (2006).

J-K. Hwang, J-Y. Chung, N-I. Baek, J-H. Park, Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans, Int. J. Antimicrob. Agents, 23(4), 377-381 (2004).

S.T. Khan, M. Khan, J. Ahmad, R. Wahab, O.H. Abd-Elkader, J. Musarrat, H. Alkhathlan, A. Al‑Kedhairy, Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans, AMB Express., 7(1), 1-11 (2017).

H.N.H. Veras, F.F.G. Rodrigues, M.A. Botelho, I.R.A. Menezes, H.D.M. Coutinho, J.G.M. da Costa, Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol, Arab. J. Chem., 10, S2790- S2795 (2017).

H.N.H. Veras, F.F.G. Rodrigues, M.A. Botelho, I.R.A. Menezes, H.D.M. Coutinho, J.G.M. da Costa, Antimicrobial effect of Lippia sidoides and thymol on Enterococcus faecalis biofilm of the bacterium isolated from root canals, Sci. World J., 2014, 1-5 (2014).

C. Pina-Vaz, A. Gonçalves Rodrigues, E. Pinto, S. Costa-de-Oliveira, C. Tavares, L. Salgueiro, C. Cavaleiro, M.C. Gonçalves, J. Martinez-de-Oliveira, Antifungal activity of Thymus oils and their major compounds, J. Eur. Acad. Dermatology Venereol., 18(1), 73-78 (2004).

E. Pinto, C. Pina-Vaz, L. Salgueiro, M.J. Gonçalves, S. Costa-De-Oliveira, C. Cavaleiro, A. Palmeira, A. Rodrigues, J. Martinez-de-Oliveira, Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species, J. Med. Microbiol., 55(10), 1367-1373 (2006).

J.R. de Oliveira, L.W. Figueira, F.L. Sper, V.M. Meccatti, S.E.A. Camargo, L.D. de Oliveira, Thymus vulgaris L. and thymol assist murine macrophages (RAW 264.7) in the control of in vitro infections by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, Immunol. Res., 65(4), 932-943 (2017).

R.D. de Castro, T.M.P.A. de Souza, L.M.D. Bezerra, G.L.S. Ferreira, E.M.M. Costa, A.L Cavalcanti, Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study, BMC Complement. Altern. Med., 15(417), 1-7 (2015).

A. Giweli, A. Džamić, M. Soković, M. Ristić, P. Marin, Chemical composition, antioxidant and antimicrobial activities of essential oil of Thymus algeriensis wild-growing in Libya, Cent. Eur. J. Biol., 8(5), 504-511 (2013).

S. Fahimirad, H. Abtahi, S.H. Razavi, H. Alizadeh, M. Ghorbanpour, Production of recombinant antimicrobial polymeric protein beta casein-E 50-52 and its antimicrobial synergistic effects assessment with thymol, Molecules, 22(6), 1-15 (2017).

S. Fahimirad, H. Abtahi, S.H. Razavi, H. Alizadeh, M. Ghorbanpour, Recombinant production and antimicrobial assessment of beta casein- IbAMP4 as a novel antimicrobial polymeric protein and its synergistic effects with thymol, Int. J. Pept. Res. Ther., 24(1), 213-222 (2017).

A. Ahmad, A. Khan, N. Manzoor, Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole, Eur J Pharm Sci., 48, 80-86 (2013).

M.N. Ngo Mback, H. Agnaniet, F. Nguimatsia, P.M. Jazet Dongmo, J.B. Hzounda Fokou, I. Bakarnga-Via, F. Fekam Boyom, C. Menut, Optimization of antifungal activity of Aeollanthus heliotropioides oliv essential oil and Time Kill Kinetic Assay, J. Mycol. Med., 26(3), 233-243 (2016).

S. Cosentino, C.I.G. Tuberoso, B. Pisano, M. Satta, V. Mascia, E. Arzedi, F. Palmas, In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils, Lett. Appl. Microbiol., 29(2), 130-135 (1999).

M. Kosar, B. Demirci, F. Demirci, K.H.C. Başer, Effect of maturation on the composition and biological activity of the essential oil of a commercially important Satureja species from Turkey: Satureja cuneifolia Ten. (Lamiaceae), J. Agric. Food Chem., 56(6), 2260-2265 (2008).

P.C. Braga, M. Alfieri, M. Culici, M. Dal Sasso, Inhibitory activity of thymol against the formation and viability of Candida albicans hyphae, Mycoses, 50(6), 502-506 (2007).

P.C. Braga, M.D. Dal Sasso, M. Culici, M. Alfieri, Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans, Fitoterapia, 78(6), 396-400 (2007).

P.C. Braga, M. Culici, M. Alfieri, M. Dal Sasso, Thymol inhibits Candida albicans biofilm formation and mature biofilm, Int. J. Antimicrob. Agents, 31(5), 472-477 (2008).

M.N. Gallucci, M.E. Carezzano, M.M. Oliva, M.S. Demo, R.P. Pizzolitto, M.P. Zunino, J.A. Zygadlo, J.S. Dambolena, In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: A quantitative structure-activity relationship analysis, J. Appl. Microbiol., 116, 795-804 (2014).

L.C. de Vasconcelos, F.C. Sampaio, J. Albuquerque Ade, L.C. Vasconcelos, Cell viability of Candida albicans against the antifungal activity of thymol, Braz. Dent. J., 25(4), 277-281 (2014).

M.R. Moein, K. Zomorodian, K. Pakshir, F. Yavari, M. Motamedi, M.M. Zarshenas, Trachyspermum ammi (L.) Sprague, J. Evidence-Based Complement. Altern. Med., 20(1), 50-56 (2015).

H. Miladi, T. Zmantar, Y. Chaabouni, K. Fedhila, A. Bakhrouf, K. Mahdouani, K. Chaieb, Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens, Microb. Pathog., 99, 95-100 (2016).

J. Mazurova, R. Kukla, M. Rozkot, A. Lustykova, E. Slehova, R. Sleha, J. Lipensky, L. Opletal, Use of natural substances for boar semen decontamination, Vet. Med., 60(5), 235-247 (2015).

J. Gutiérrez-Fernández, M.R. García-Armesto, R. Álvarez-Alonso, P. del Valle, D. de Arriaga, J. Rúa, Antimicrobial activity of binary combinations of natural and synthetic phenolic antioxidants against Enterococcus faecalis, J. Dairy Sci., 96(8), 4912-4920 (2013).

H. Cetin-Karaca, M.C. Newman, Antimicrobial efficacy of plant phenolic compounds against Salmonella and Escherichia Coli, Food Biosci., 11, 8-15 (2015).

M.J. Mohammed, F.A. Al-Bayati, Isolation and identification of antibacterial compounds from Thymus kotschyanus aerial parts and Dianthus caryophyllus flower buds, Phytomedicine, 16(6-7), 632-637 (2009).

Q. Ma, P.M. Davidson, Q. Zhong, Antimicrobial properties of lauric arginate alone or in combination with essential oils in tryptic soy broth and 2% reduced fat milk, Int. J. Food Microbiol., 166(1), 77-84 (2013).

Y. Sultanbawa, A. Cusack, M. Currie, C. Davis, An innovative microplate assay to facilitate the detection of antimicrobial activity in plant extracts, J. Rapid Methods Autom. Microbiol., 17(4), 519-534 (2009).

M.F. Lemos, M.F. Lemos, H.P. Pacheco, A.C. Guimarães, F M. ronza, D.C. Endringer, R. Scherer, Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris, Ind. Crops Prod., 95, 543-548 (2017).

R. Hamoud, S. Zimmermann, J. Reichling, M. Wink, Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli, Phytomedicine, 21(4), 443-447 (2014).

J. Ivanovic, D. Misic, I. Zizovic, M. Ristic, In vitro control of multiplication of some food-associated bacteria by thyme, rosemary and sage isolates, Food Control, 25(1), 110-116 (2012).

N.A. Olasupo, D.J. Fitzgerald, M.J. Gasson, A. Narbad, Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium, Lett. Appl. Microbiol., 37(6), 448-451 (2003).

E. Du, L. Gan, Z. Li, W. Wang, D. Liu, Y. Guo, In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens, J. Anim. Sci. Biotechnol., 6(58), 1-12 (2015).

A. Ait-Ouazzou, L. Cherrat, L. Espina, S. Lorán, C. Rota, R. Pagán, The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation, Innov. Food Sci. Emerg. Technol., 12(3), 320-329 (2011).

N. Gavaric, S.S. Mozina, N. Kladar, B. Bozin, Chemical Profile, Antioxidant and Antibacterial Activity of Thyme and Oregano Essential Oils, Thymol and Carvacrol and Their Possible Synergism, J. Essent. Oil-Bearing Plants, 18(4), 1013-1021 (2015).

A. Guarda, J.F. Rubilar, J. Miltz, M.J. Galotto, The antimicrobial activity of microencapsulated thymol and carvacrol, Int. J. Food Microbiol., 146(2), 144-150 (2011).

A. Campion, R. Morrissey, D. Field, P.D. Cotter, C. Hill, R.P. Ross, Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157:H7, Food Microbiol., 65, 254-263 (2017).

B. Shah, P.M. Davidson, Q. Zhong, Antimicrobial activity of nanodispersed thymol in tryptic soy broth, J. Food Prot., 76(3), 440-447 (2013).

R.S. Pei, F. Zhou, B.P. Ji, J. Xu, Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method, J. Food Sci., 74(7), M379-M383 (2009).

I.M. Helander, H-L. Alakomi, K. Latva-Kala, T. Mattila-Sandholm, I. Pol, E.J. Smid L.G. Gorris, A. Wright, Characterization of the action of selected essential oil components on Gram-Negative bacteria, J. Agric. Food Chem., 46(9), 3590-3595 (1998).

S.E. Walsh, J.Y. Maillard, A.D. Russell, C.E. Catrenich, D.L. Charbonneau, R.G. Bartolo, Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria, J. Appl. Microbiol., 94(2), 240-247 (2003).

J.H. Lee, Y.G. Kim, J. Lee, Carvacrol‐rich oregano oil and thymol‐rich thyme red oil inhibit biofilm formation and the virulence of uropathogenic Escherichia coli, J. Appl. Microbiol., 123(6), 1420-1428 (2017).

F. Tao, L.E. Hill, Y. Peng, C.L. Gomes, Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications, LWT - Food Sci. Technol., 59(1), 247-255 (2014).

S. Gutierrez, A. Moran, H. Martinez-Blanco, M.A. Ferrero, L.B. Rodriguez-Aparicio, The usefulness of non-toxic plant metabolites in the control of bacterial proliferation, Probiotics & Antimicro. Prot., 9(3), 323-333 (2017).

M. Cristani, M. D’Arrigo, G. Mandalari, F. Castelli, M.G. Sarpietro, D. Micieli, D. Venuti, G. Bisignano, A. Saija, D. Trombetta, Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity, J Agric Food Chem., 55(15), 6300-6308 (2007).

S. Ananda-Baskaran, G.W. Kazmer, L. Hinckley, S.M. Andrew, K. Venkitanarayanan, Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro, J. Dairy Sci., 92(4), 1423-1429 (2009).

M. Gutiérrez-Larraínzar, J. Rúa, I. Caro, C. de Castro, D. de Arriaga, M.R. García-Armesto, P. del Valle, Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria, Food Control, 26(2), 555-563 (2012).

Z. Schelz, J. Molnar, J. Hohmann, Antimicrobial and antiplasmid activities of essential oils, Fitoterapia, 77(4), 279-285 (2006).

A.P. Tofiño-Rivera, M. Ortega-Cuadros, A. Melo-Ríos, H.J. Mier-Giraldo, Vigilancia tecnológica de plantas aromáticas: de la investigación a la consolidación de la agrocadena colombiana, Corpoica Cienc Tecnol Agropec., 18(2), 353-377 (2017).

Cómo citar

APA

Martínez-Pabón, M. C. y Ortega-Cuadros, M. (2020). Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review. Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(1). https://doi.org/10.15446/rcciquifa.v49n1.87006

ACM

[1]
Martínez-Pabón, M.C. y Ortega-Cuadros, M. 2020. Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review. Revista Colombiana de Ciencias Químico-Farmacéuticas. 49, 1 (ene. 2020). DOI:https://doi.org/10.15446/rcciquifa.v49n1.87006.

ACS

(1)
Martínez-Pabón, M. C.; Ortega-Cuadros, M. Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review. Rev. Colomb. Cienc. Quím. Farm. 2020, 49.

ABNT

MARTÍNEZ-PABÓN, M. C.; ORTEGA-CUADROS, M. Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 49, n. 1, 2020. DOI: 10.15446/rcciquifa.v49n1.87006. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/87006. Acesso em: 22 ene. 2025.

Chicago

Martínez-Pabón, María Cecilia, y Mailen Ortega-Cuadros. 2020. «Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review». Revista Colombiana De Ciencias Químico-Farmacéuticas 49 (1). https://doi.org/10.15446/rcciquifa.v49n1.87006.

Harvard

Martínez-Pabón, M. C. y Ortega-Cuadros, M. (2020) «Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review», Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(1). doi: 10.15446/rcciquifa.v49n1.87006.

IEEE

[1]
M. C. Martínez-Pabón y M. Ortega-Cuadros, «Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review», Rev. Colomb. Cienc. Quím. Farm., vol. 49, n.º 1, ene. 2020.

MLA

Martínez-Pabón, M. C., y M. Ortega-Cuadros. «Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 49, n.º 1, enero de 2020, doi:10.15446/rcciquifa.v49n1.87006.

Turabian

Martínez-Pabón, María Cecilia, y Mailen Ortega-Cuadros. «Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review». Revista Colombiana de Ciencias Químico-Farmacéuticas 49, no. 1 (enero 1, 2020). Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/87006.

Vancouver

1.
Martínez-Pabón MC, Ortega-Cuadros M. Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 1 de enero de 2020 [citado 22 de enero de 2025];49(1). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/87006

Descargar cita

CrossRef Cited-by

CrossRef citations3

1. Weiyi Wen, Haiping Xiang, Huiyun Qiu, Jianwei Chen, Xuemin Ye, Lin Wu, Zhiqiang Chen, Shengqiang Tong. (2024). Screening and identification of antibacterial components in Artemisia argyi essential oil by TLC–direct bioautography combined with comprehensive 2D GC × GC-TOFMS. Journal of Chromatography B, 1234, p.124026. https://doi.org/10.1016/j.jchromb.2024.124026.

2. Zehra I. Yildiz, Fuat Topuz, Mahmoud Aboelkheir, Mehmet Emin Kilic, Engin Durgun, Tamer Uyar. (2024). Nanoencapsulation of Menthol/Cyclodextrin Inclusion Complexes in Rapidly Dissolving Electrospun Gelatin Nanofibers. ACS Food Science & Technology, 4(2), p.392. https://doi.org/10.1021/acsfoodscitech.3c00496.

3. Anna Paula de Castro Teixeira, Flaviana Maria de Sousa Melo, Igara Oliveira Lima, Hilzeth de Luna Freire Pessôa, Rita de Cássia da Silveira e Sá. (2024). Do menthol and its derivatives present biological activity with antifungal potential?. Journal of Essential Oil Research, 36(4), p.291. https://doi.org/10.1080/10412905.2024.2376673.

Dimensions

PlumX

Visitas a la página del resumen del artículo

1584

Descargas

Los datos de descargas todavía no están disponibles.