Publicado
Composición de ácidos grasos de extractos etéreos de Bryophyllum pinnatum Lam., Ficus exasperata Vahl., Gossypium herbaceum Linn. y Hilleria latifolia (Lam.) H. Walt
Fatty acid compositions of ether extracts of Bryophyllum pinnatum Lam., Ficus exasperata Vahl., Gossypium herbaceum Linn. and Hilleria latifolia (Lam.) H. Walt
DOI:
https://doi.org/10.15446/rcciquifa.v49n1.87033Palabras clave:
Ácidos grasos, seguridad alimentaria, Bryophyllum pinnatum Lam ., Ficus exasperata Vahl ., Gossypium herbaceum Linn., Hilleria latifolia (Lam.) H. Walt (es)Fatty acids, food security, Bryophyllum pinnatum Lam., Ficus exasperata Vahl., Gossypium herbaceum Linn., Hilleria latifolia (Lam.) H. Walt (en)
Descargas
Actualmente, existe un creciente interés en identificar fuentes alternativas de ácidos grasos debido a la creciente demanda actual de productos botánicos ricos en aceite en aplicaciones industriales. El objetivo principal de este trabajo fue identificar las composiciones de ácidos grasos de extractos de éter de hojas secas de Bryophyllum pinnatum Lam., Ficus exasperata Vahl., Gossypium herbaceum Linn. y Hilleria latifolia (Lam.) H. Walt. Los ácidos grasos fueron analizados por cromatografía de gases con detector de ionización de llama. Entre los extractos de éter evaluados, los mayores contenidos de ácidos grasos saturados se encontraron en H. latifolia (27,96%) con presencia principal de ácido esteárico en comparación con el contenido de los ácidos grasos saturados en B. pinnatum (0,53%), F. exasperata (0,04%) y G. herbaceum (0,47%). Igualmente, el resultado mostró que la H. latifolia contenía el mayor porcentaje de ácidos grasos insaturados con presencia predominante de ácido oleico con una cantidad de 41,04%. También se encontró que el ácido linoleico tiene el valor más alto en H. latifolia con una cantidad de 20,41%. Se encontró ácido esteárico, ácido oleico y ácido linoleico en todas las muestras. El extracto de H. latifolia contenía una mezcla saludable de diferentes tipos de ácidos grasos, lo que sugiere que es una fuente probable de ácidos grasos adecuados.
Currently, there is a growing interest in identifying alternative sources of fatty acids due to the present increasing demand for oil-rich botanicals in industrial applications. The main objective of this work was to identify the fatty acid compositions of ether extracts of dried leaves of Bryophyllum pinnatum Lam., Ficus exasperata Vahl., Gossypium herbaceum Linn. and Hilleria latifolia (Lam.) H. Walt. The fatty acids were analyzed by gas chromatography with flame ionization detector. Among the evaluated ether extracts, the higher contents of saturated fatty acids were found in H. latifolia (27.96%) with the principal presence of stearic acid compared to the content of the saturated fatty acids in B. pinnatum (0.53%), F. exasperata (0.04%) and G. herbaceum (0.47%). Equally, the result showed that H. latifolia contained the highest percentage of unsaturated fatty acids with the predominant presence of oleic acid with the amount of 41.04%. Linoleic acid was also found to have the highest value in H. latifolia with the amount of 20.41%. Stearic acid, oleic acid, and linoleic acid were found in all the samples. The extract of H. latifolia contained a healthy mixture of different types of fatty acids thus suggesting it as a probable source of suitable fatty acids.
Referencias
G.O. Burr, M.M. Burr, A new deficiency disease produced by the rigid exclusion of fat from the diet, J. Biol. Chem., 82, 345-367 (1929).
V. Wijendran, K.C. Hayes, Dietary n-6 and n-3 fatty acid balance and cardiovascular health, Ann. Rev. Nutr, 24, 597-615 (2004).
N.D. Riediger, R.A. Othman, M. Suh, M.H. Moghadasian, A systemic review of the roles of n-3 fatty acids in health and disease, J. Am. Diet. Assoc., 109, 668-679 (2009).
M. O’Keeffe, M. St-Onge, Saturated fat and cardiovascular disease: A review of current evidence, Curr. Cardio. Risk. Rep., 7, 154-162 (2013).
E.B. Schmidt, J.H. Christensen, I. Aardestrup, T. Madsen, S. Riahi, V.E. Hansen, H.A. Skou, Marine n-3 fatty acids: Basic features and background, Lipids, 36, S65-S68 (2001).
B.J. Oso, O.M. Oyeleke, A.T. Oladiji, Inhibition of the expressions of splenic TNF-alpha receptor superfamily 8, CD3 and CD20 by ethanolic extract of Xylopia aethiopica (Dunal) A. Rich, Inter. J. Biol. Sci. Appl., 5(2), 29-33 (2018).
B.J. Oso, A.A. Boligon, A.T. Oladiji, Metabolomic profiling of ethanolic extracts of the fruit of Xylopia aethiopica (Dunal) A. Rich using Gas Chromatography and High-Performance Liquid Chromatography techniques, J. Pharmacog. Phytochem., 7(1), 2083-2090 (2018).
W.K.M. Abotsi, G.K. Ainooson, E. Woode, Anti-inflammatory and antioxidant effects of an ethanolic extract of the aerial parts of Hilleria latifolia (Lam.) H. Walt. (Phytolaccaceae), African J. Tradit. Comp. Alt. Med., 9(1), 138-152 (2012).
A.A. Olabiyi, Y.R. Alli Smith, L.J. Babatola, A.J. Akinyemi, G. Oboh, Inhibitory effect of aqueous extract of different parts of Gossypium herbaceum on key enzymes linked with type 2 diabetes and oxidative stress in rat pancreas in vitro, Beni-Suef J. Basic Appl. Sci., 5, 180-186 (2016).
R. Uzzaman, M. Ghaffar, Anti-diabetic and hypolipidemic effects of extract from the seed of Gossypium herbaceum L. in alloxan-induced diabetic rabbits, Pakistan J. Pharm. Sci., 30(1), 75-86 (2017).
M. Hanana, H. Mezghenni, R.B. Ayed, A.B. Dhiab, S. Jarradi, B. Jamoussi, L. Hamrouni, Nutraceutical potentialities of Tunisia Argan oil based on its physicochemical properties and fatty acid content as assessed through Bayesian network analyses, Lipids Health Dis., 17, 138 (2018).
T.A.A. Moussa, O.A. Almaghrabi, Fatty acid constituents of Peganum harmala plant using Gas Chromatography-Mass Spectroscopy, Saudi J. Biol. Sci., 23(3), 397-403 (2016).
International Institute for Applied Systems Analysis (IIASA), Biofuels and food security: Implications of an accelerated biofuels production, OPEC Fund for International Development, Vienna, Austria, 2009.
A. Gasparatos, P. Stromberg, K. Takeuchi, Sustainability impacts of first-generation biofuels, Animal Frontiers, 3(2), 12-26 (2013).
D. López-Alonso, F. García-Maroto, Plants as ‘chemical factories’ for the production of polyunsaturated fatty acids, Biotech. Adv., 18, 481-497 (2000).
J.S. Aprioku, I. Igbe, Effects of aqueous Bryophyllum pinnatum leaf extract on haematological, renal and sperm indices in Wistar rats, Indian J. Pharm. Sci., 79(4), 521-526 (2017).
M. Yadav, V.D. Gulkari, M.W. Wanjari, Bryophyllum pinnatum leaf extracts prevent formation of renal calculi in lithiatic rats, Anc. Sci. Life., 36(2), 90-97 (2016).
R.A. McKenzie, P.J. Dunster, Hearts and flowers: Bryophyllum poisoning of cattle, Aust. Vet. J., 63(7): 222-227 (1986).
R.A. McKenzie, F.P. Franke, P.J. Dunster, The toxicity to cattle and bufadienolide content of six Bryophyllum species, Aust. Vet. J., 64(10), 298-301 (1987).
S.O. Adewole, T. Adenowo, T. Naicker, J.A. Ojewole, Hypoglycaemic and hypotensive effects of Ficus exasperata Vahl. (Moraceae) leaf aqueous extract in rats, African J. Tradit. Complement. Altern. Med., 8, 275-283 (2011).
A.A. Buniyamin. K.I.Q. Eric, C.A. Fabian, Pharmacognosy and hypotensive evaluation of Ficus exasperata Vahl (Moraceae) leave, Acta Poloniae Pharmaceutica-Drug Research, 64(6), 543-546 (2007).
O.A. Odunbaku, O.A. Ilusanya, K.S. Akasoro, Antibacterial activity of ethanolic leaf extract of Ficus exasperata on Escherichia coli and Staphylococcus albus, Sci. Res. Essay, 3(11), 562-564 (2008).
E.E. Bafor, O. Igbinuwen, Acute toxicity studies of the leaf extract of Ficus exasperata on haematological parameters, body weight and body temperature, J. Ethnopharmacol., 123, 302-307 (2009).
D.S. Ogunleye, A.A. Adeyemi, A.M. Sanni, Hypoglycemic activities of the stem bark of Cola acuminate Vahl and leaf of Ficus exasperata (P. Beauv) Schott and Endl, Nig. Qt. J. Hosp. Med., 13(1-2), 58-60 (2003).
R.P. Mensink, P.L. Zock, A.D. Kester, M.B. Katan, Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials, Am. J. Clin. Nutr., 77(5), 1146-1155 (2003).
S. Azeez, Fatty acid profile of coconut oil in relation to nut maturity and season in selected cultivars/hybrids, British Food J., 109(4), 272-279 (2007).
J. Orsavova, L. Misurcova, J.V. Ambrozova, R. Vicha, J. Mlcek, Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids, Int. J. Mol. Sci., 16, 12871-12890 (2015).
D.M.M. Luzia, N. Jorge, Composição centesimal, potencial antioxidante e perfil dos ácidos graxos de sementes de jambolão (Syzygium cumini L.), Revista Ciência Agronômica, 40(2), 219-223 (2009).
S.V. Borges, M.C.A. Maia, R.C.M. Gomes, N.B. Cavalcanti, Chemical composition of umbu (Spondias tuberosa Arr. Cam) seeds, Quim. Nova, 30(1), 49-52 (2007).
K.D. Chamberlin, N.A. Barkley, B.L. Tillman, J.W. Dillwith, R. Madden, M.E. Payton, R.S. Bennett, A comparison of methods used to determine the oleic/linoleic acid ratio in cultivated peanut (Arachis hypogaea L.), Agric. Sci., 5(3) Article ID: 43023 (2014).
N.R. Damasceno, A. Pérez-Heras, M. Serra, M. Cofán, A. Sala-Vila, J. Salas-Salvadó, E. Ros, Crossover study of diets enriched with virgin olive oil, walnuts or almonds. Effects on lipids and other cardiovascular risk markers, Nutr. Metab. Cardiovasc. Dis., 1(Suppl), S14-S20 (2011).
S. Teres, G. Barcelo-Coblijn, M. Benet, R. Alvarez, R. Bressani, J.E. Halver, P.V. Escriba, Oleic acid content is responsible for the reduction in blood pressure induced by olive oil, Proc. Nat. Acad. Sci., 105, 13811-13816 (2008).
E.K. Vassiliou, A. Gonzalez, C. Garcia, J.H. Tadros, G. Chakraborty, J.H. Toney, Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems, Lipids Health Dis., 8, 25 (2009).
C. Carrillo, M. CaviaMdel, S. Alonso-Torre, Role of oleic acid in immune system; mechanism of action: A review, Nutr. Hosp., 27, 978-990 (2012).
M. Reardon, S. Gobern, K. Martinez, W. Shen, T. Reid, M. McIntosh, Oleic acid attenuates trans-10, cis-12 conjugated linoleic acid-mediated inflammatory gene expression in human adipocytes, Lipids, 47, 1043-1051 (2012).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Babatunde Oso, Ige Olaoye, Emmanuel Ekpo, Godswill Akhigbe. (2022). Antioxidant potentials and anti-inflammatory properties of methanol extracts of ripe and unripe peels of Ananas comosus (L.) Merr.. Ovidius University Annals of Chemistry, 33(1), p.94. https://doi.org/10.2478/auoc-2022-0013.
2. Babatunde J. Oso, Nosarieme O. Abey, Oyedotun M. Oyeleke, Boyede Olowookere. (2022). In Vitro Evaluation of the Influence of Extraction Solvents on Antioxidant and Anti-Inflammatory Potentials of Dried Leaf of Bryophyllum pinnatum Lam.. Contemporary Agriculture, 72(1-2), p.75. https://doi.org/10.2478/contagri-2023-0010.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2020 Revista Colombiana de Ciencias Químico-Farmacéuticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13