Published
A comparative study of extraction techniques for maximum recovery of bioactive compounds from Ganoderma lucidum spores
Estudio comparativo de las técnicas de extracción para la máxima recuperación de los compuestos bioactivos de las esporas de Ganoderma lucidum
Um estudo comparativo das técnicas de extracção para a máxima recuperação de compostos bioactivos a partir de esporos de Ganoderma lucidum
DOI:
https://doi.org/10.15446/rcciquifa.v49n1.84456Keywords:
Antioxidants, biological activity, spore-breaking techniques, chemical analysis, Fourier-transform infrared spectroscopy, Ganodermataceae (en)Antioxidantes, actividad biológica, técnicas de rompimiento, análisis químico, espectroscopia infrarroja por transformada de Fourier, Ganodermataceae (es)
Antioxidantes, atividade biológica, técnicas de quebra, análise química, espectroscopia de infravermelho da transformada de Fourier, Ganodermataceae (pt)
Downloads
This study aimed at evaluating effective methods for breaking the hard and insoluble spores of Ganoderma lucidum to recover functional biomolecules. Rupture techniques were evaluated such as manual maceration (RM), maceration with spheres of various materials (BR), and microwave exposure plus maceration with steel/chrome spheres (MBR1). Spore rupture was evaluated using UV-Vis spectroscopy, which showed vibrations of 2955, 1642, 1240, 1080 and 1746 cm-1 corresponding to changes in spore walls. The MBR1 extract contained the largest amounts of carbohydrates (19.80 mg.g-1 spores) and polyphenols (2.21 mg.g-1 spores), whereas the BR extract had higher antioxidant activity (57.22%Inb DPPH). The MBR1 and BR extracts contained 62.2 and 73.5% glucose, respectively. Both methods also involved significant extraction of carbohydrates and proteins. The best way to extract biomolecules from spore walls is to perform a microwave heat treatment and break the walls with steel/chrome spheres; this produces large quantities of carbohydrates with antioxidant properties.
El objetivo de este estudio fue evaluar varios métodos de ruptura de las esporas de Ganoderma lucidum y extraer sus propiedades bioactivas. Para este propósito se evaluaron diferentes técnicas de rompimiento como: la maceración manual (RM), la maceración con esferas de diversos materiales (BR) y la exposición a microondas junto la maceración de las esporas con esferas de acero/cromo (MBR1). La ruptura de las esporas fue evaluada por espectroscopia UV-Vis, la cual mostró que las vibraciones 2955, 1642, 1240, 1080 y 1746 cm-1 correspondieron a cambios estructurales en las paredes de las esporas. El extracto MBR1 presento el mayor contenido de carbohidratos (19,80 mg.g-1) y polifenoles (2,21 mg.g-1), mientras que el extracto BR tuvo una mayor actividad antioxidante (57,22% Inb DPPH). Los extractos MBR1 y BR también presentaron en el análisis de monosacáridos un 62,2 y 73,5% de contenido glucosa. Como conclusión la mejor metodología para extraer biomoléculas de las paredes de las esporas de G. lucidum fueron el tratamiento térmico con microondas y la ruptura de las paredes con esferas de acero/cromo, porque este proceso permitió la extracción de una mayor cantidad de carbohidratos con posibles propiedades antioxidantes.
References
D. Sliva, Cellular and physiological effects of Ganoderma lucidum (Reishi), Mini-Rev. Med. Chem., 4, 873-879 (2004).
D. Silva, M. Sedlak, V. Slivova, T. Valachovicova, F.P.J. Lloyd, N.W.Y. Ho, Biologic activity of spores and dried powder from human breast and prostate cancer cells, J. Altern. Complement. Med., 9, 491-497(2003).
S.A. Heleno, L. Barros, A. Martins, M. João, R.P. Queiroz, C. Santos-Buelga, I.C.F.R. Ferreira, Fruiting body, spores and in vitro produced mycelium of Ganoderma lucidum from Northeast Portugal: A comparative study of the antioxidant potential of phenolic and polysaccharidic extracts, Food Res. Int., 46, 135-140 (2012).
B. Boh , M. Berovic, J. Zhang, L. Zhi-Bin, Ganoderma lucidum and its pharmaceutically active compounds, Biotechnol. Annu. Rev., 13(7), 265-301 (2007).
S. Keypour, H. Rafati, H. Riahi, F. Mirzajani, M.F. Moradali, Qualitative analysis of ganoderic acids in Ganoderma lucidum from Iran and China by RP-HPLC and electrospray ionisation-mass spectrometry (ESI-MS), Food Chem., 119, 1704-1708 (2010).
J.E. Adaskaveg, R.L. Gilbertson, Basidiospores, pilocystidia, and other basidiocarp characters in several species of the Ganoderma lucidum complex, Mycologie, 80, 493-507 (1988).
K.T. Chau, S. Wu, Impact breakage of single particles, double impact test, in: A.D. Salman, M. Ghadiri, M.J. Hounslow, editors, Handbook of Powder Technology, Elsevier, Amsterdam, 2007, p. 69-85.
F. Hennicke, Z. Cheikh-Ali, T. Liebisch, J.G. MacIá-Vicente, H.B. Bode, M. Piepenbring, Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles, Phytochem., 127, 29-37 (2016).
X. Zhu, X. Chen, J. Xie, P. Wang, W. Su, Mechanochemical-assisted extraction and antioxidant activity of polysaccharides from Ganoderma lucidum spores, Int. J. Food Sci. Technol., 47, 927-932 (2012).
B. Stuart, FTIR of biomolecules, in: B. Zhang, L. Cheng, editors, Reviews in cell biology and molecular medicine, Wiley-VCH, Germany, 2006.
X. Bao, C. Liu, J. Fang , X. Li, Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst, Carbohydr. Res., 332, 67-74 (2001).
L. Guo, J. Xie, Y. Ruan, L. Zhou, H. Zhu, X. Yun, Y. Jiang, L. Lü, K. Chen, Z. Min, International immunopharmacology characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum, Int. Immunopharmacol., 9, 1175-1182 (2009).
X. Wang, X. Chen, Z. Qi, X. Liu, W. Li, S.Wang, A study of Ganoderma lucidum spores by FTIR microspectroscopy. Spectrochim Acta A, Mol. Biomol. Spectrosc., 91, 285-289 (2012).
.J. Wang,R. Ke, S. Zhang, Breaking the sporoderm of Ganoderma lucidum spores by combining chemical reaction with physical actuation, Nat. Prod. Res., 31, 2428-2434 (2017).
M.M. Bradford, A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254 (1976).
V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Viticult, 16, 144-158 (1965).
F.A. Loewus, Improvement in anthrone method for determination of carbohydrates, Anal. Chem., 24, 219 (1952).
Q. Dong, Y. Wang, L. Shi, J. Yao, J. Li, F. Ma, K. Ding, A novel water-soluble β-D-glucan isolated from the spores of Ganoderma lucidum, Carbohydr. Res, 353, 100-105 (2012).
T. Stevenson, H. Furneaux, Chemical methods from red algae for the analysis of sulphated galactans, Carbohydr. Res., 210, 277-298 (1991).
R. Falshaw, R.H. Furneaux, Carrageenan from the tetrasporic stage of Gigartina decipiens (Gigartinaceae, Rhodophyta), Carbohydr. Res., 252, 171-182 (1994).
L.G. Ferreira, M.D. Noseda, A.G. Gonçalves, D.R.B. Ducatti, M.T. Fujii, M.E.R. Duarte, Chemical structure of the complex pyruvylated and sulfated agaran from the red seaweed Palisada flagellifera (Ceramiales, Rhodophyta), Carbohydr. Res., 347, 83-94 (2012).
P.E. Jansson, L. Kenne, H. Liedgren, A practical guide to the methylation, analysis of carbohydrates, Chemical communications/University of Stockholm, Stockholm, 1976.
D.A. Navarro, C.A. Stortz, Determination of the configuration of 3,6-anhydrogalactose and cyclizable α-galactose 6-sulfate units in red seaweed galactans, Carbohydr. Res., 338, 2111-2118 (2003).
M.S. Férnandez-Pachón, D.Villaño, A.M. Troncoso, M.C. García-Parrilla, Determination of the phenolic composition of sherry and table white wines by liquid chromatography and their relation with antioxidant activity, Anal. Chim. Acta., 563, 101-108 (2006).
E.G. Blight, W.J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911-917 (1959).
B.S. Min, J.J. Gao, N. Nakamura, M. Hattori, Triterpenes from the spores Ganoderma lucidum and their cytotoxicity against meth-A and LLC tumor cells, Chem. Pharm. Bull., 48, 1026-1033 (2000).
X. Liu, J.P. Yuan, C.K. Chung, X.J. Chen, Antitumor activity of the sporodermbroken germinating spores of Ganoderma lucidum, Cancer Lett., 182, 155-161 (2002).
G.G.L. Yue, K. Fung, P. Leung, C.B.S. Lau, Comparative studies on the immunomo-dulatory and antitumor activities of the different parts of fruiting body of Ganoderma lucidum and Ganoderma spores, Phytother. Res., 22, 1282-1291 (2008).
C.R. Soccol, L.Y. Bissoqui, C. Rodrigues, R. Rubel, S.R.B.R. Sella, F. Leifa, L.P. Souza Vandenberghe, V. Thomaz-Soccol, Pharmacological properties of biocompounds from spores of the lingzhi or reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes), A Review, Int. J. Med. Mushrooms, 18, 757-767 (2016).
K. Yano, S. Ohoshima, Y. Gotou, K. Kumaido, Direct measurement of human lung cancerous and noncancerous tissues by fourier transform infrared microscopy, can an infrared microscope be used as a clinical tool?, Anal. Biochem., 287, 218-225 (2000).
M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol., 7, 60-72 (2014).
L. Li, H.J. Guo, L.Y. Zhu, L. Zheng, X. Liu, A supercritical-CO2 extract of Ganoderma lucidum spores inhibits cholangiocarcinoma cell migration by reversing the epithelial-mesenchymal transition, Phytomed., 23, 491-497 (2016).
X. Liu, S.P. Xu, J.H. Wang, J.P. Yuan, L.X. Guo, X. Li, X.N. Huang, Characterization of Ganoderma spore lipid by stable carbon isotope analysis: Implications for authentication, Anal. Bioanal. Chem., 388, 723-731 (2007).
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Nguyen Huu Lac Thuy, Vo Linh Tu, Le Nguyen Anh Thu, Tran Thanh Giang, Dao Tang Khanh Huyen, Duong Hoang Loc, Dao Ngoc Hien Tam, Nguyen Tuan Phat, Hong-Han Huynh, Thien Tan Tri Tai Truyen, Quang-Hien Nguyen, Uyen Do, Dang Nguyen, Truong Van Dat, Le Huu Nhat Minh. (2023). Pharmacological Activities and Safety of Ganoderma lucidum Spores: A Systematic Review. Cureus, https://doi.org/10.7759/cureus.44574.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 Revista Colombiana de Ciencias Químico-Farmacéuticas

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Department of Pharmacy of the Faculty of Sciences of the National University of Colombia authorizes the photocopy of articles and texts for academic or internal purposes of the institutions, citing the source. The ideas issued by the authors are the express responsibility of these and it does not necessarily reflect the views of this journal.
The entire contents of this journal, except when is identified, are subject to a Creative Commons Attribution License 4.0 adopted by Colombia. Consult the regulation: http://co.creativecommons.org/?page_id=13