Publicado

2017-05-01

Nanopartículas de paladio soportadas en hidroxisales laminares: uso potencial en reacciones de Sonogashira

Palladium nanoparticles supported in laminar hydroxide salts: potential use in Sonogashira reactions

DOI:

https://doi.org/10.15446/rev.colomb.quim.v46n2.63028

Palabras clave:

hidroxisales, lauril sulfato de sodio, paladio, acoplamiento C-C tipo Sonogashira, difenilacetileno, 2-fenilbenzofurano (es)
hydroxide salts, sodium lauryl sulfate, palladium nanoparticles, Sonogashira C-C coupling reactions, diphenylacetylene, 2-phenylbenzofuran. (en)

Descargas

Autores/as

  • Cristian Camilo Giraldo Londoño Grupo de investigación Síntesis y Mecanismos de Reacción en Química. Universidad de Caldas, Calle 65 No. 26-10, Manizales, Colombia
  • Rogelio Ocampo Cardona Facultad de Ciencias Exactas y Naturales. Departamento de Química. Universidad de Caldas, Calle 65 No. 26-10, Manizales, Colombia
  • Luz Amalia Ríos Vásquez Facultad de Ciencias Exactas y Naturales. Departamento de Química. Universidad de Caldas, Calle 65 No. 26-10, Manizales, Colombia.
  • Maby Moll Martínez Garzón Facultad de Ciencias Exactas y Naturales. Departamento de Química. Universidad de Caldas, Calle 65 No. 26-10, Manizales, Colombia
  • Jhon Mauricio Aguirre Cortes Facultad de Ciencias Exactas y Naturales. Departamento de Química. Universidad de Caldas, Calle 65 No. 26-10, Manizales, Colombia. Dirección actual: Universidad Católica, Manizales, Colombia

En este artículo se reporta la síntesis de nanopartículas de paladio soportadas en hidroxisales de acetato de zinc y modificadas con un surfactante (LHS-Zn-Ac/Pd0 y LHS-Zn-Suf/Pd0 respectivamente), mediante inserción de [PdCl4]2- y su posterior reducción con etanol en reflujo. Con la inserción de surfactante, la distancia interlaminar de la hidroxisal de partida (LHS-Zn-Ac) se incrementó de 13,8 Å a 29,8 Å, mientras que los materiales finales, que contenían paladio metálico registraron distancias interlaminares de 22,4 Å y 29,4 Å para LHS-Zn-Ac/Pd0 y LHS-Zn-Suf/Pd0 respectivamente. Las hidroxisales de acetato de zinc y de surfactante con nanopartículas metálicas de paladio incorporadas fueron ensayadas como potenciales catalizadores en la reacción de Sonogashira partiendo de fenilacetileno y yoduros de arilo, particularmente yodobenceno o 2-yodofenol, dando lugar a difenilacetileno (32% de rendimiento de producto aislado y purificado) o 2-fenilbenzofurano (18%). Todos los materiales inorgánicos fueron caracterizados mediante las siguientes técnicas: difracción de rayos X (XRD), microscopia electrónica de barrido (SEM y SEM-EDS), microscopia electrónica de transmisión (TEM) y espectroscopía de Infrarrojo con Transformada de Fourier (FT-IR). Por su parte los compuestos orgánicos se caracterizaron por resonancia magnética nuclear (1H-NMR y 13C-NMR) y cromatografía de gases acoplada a espectrometría de masas (GC-MS).

This article reports the synthesis of palladium nanoparticles supported on zinc acetate hydroxysalts and modified with a surfactant (LHS-Zn-Ac/Pd0 and LHS-Zn-Suf/Pd0 respectively), by insertion of tetrachloropaladate and its subsequent reduction with ethanol at reflux. With the surfactant insertion, the interlaminar distance of the starting hydroxysalt (LHS-Zn-Ac) increased from 13.8 Å to 29.8 Å, while the final materials containing palladium metal registered interlaminar distances of 22.4 Å and 29.4 Å for LHS-Zn-Ac/Pd0 and LHS-Zn-Suf/Pd0 respectively. Zinc acetate hydroxysalt and surfactant with incorporated palladium metal nanoparticles were tested as potential catalysts in the Sonogashira reaction starting from phenylacetylene and aryl iodides, particularly iodobenzene or 2-iodophenol, giving diphenylacetylene (32% yield of isolated and purified product) or 2-phenylbenzofuran (18%). All inorganic materials were characterized by the following techniques: (1) X-ray diffraction (XRD), (2) scanning electron microscopy (SEM and SEM-EDS), (3) transmission electron microscopy (TEM) and (4) Fourier transformed infrared spectroscopy (FT-IR). The organic compounds were characterized by nuclear magnetic resonance (1H-NMR and 13C-NMR) and gas chromatography coupled to mass spectrometry (GC-MS).

Referencias

Giraldo, O.; Brock, S. L.; Willis, W. S.; Marquez, M; Suib, S. L.; Ching, S. Manganese Oxide Thin Films with Fast Ion-Exchange Properties. J. Am. Chem. Soc. 2000,122 (38), 9330–9331. DOI: https://doi.org/10.1021/ja001860i.

Ogawa, M.; Kaiho, H. Homogeneous Precipitation of Uniform Hydrotalcite Particles Langmuir. 2002, 18 (11), 4240–4242. DOI: https://doi.org/10.1021/la0117045.

Morioka, H.; Tagaya, H.; Karasu, M.; Kadokawa, J.; Chiba, K. Effects of Zinc on the New Preparation Method of Hydroxy Double Salts. Inorg. Chem. 1999, 38 (19), 4211–4216. DOI: https://doi.org/10.1021/ic9812149.

Kandare, E.; Hossenlopp, J. M. Hydroxy double salt anion exchange kinetics: effects of precursor structure and anion size. J. Phys. Chem. 2005, 109 (17), 8469–75. DOI: https://doi.org/10.1021/jp0465433.

Cavani, A. F.; Trifiró, F. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today. 1991, 11, 173–301.

Arizaga, G.; Satyanarayana, K.; Wypych, F. Layered hydroxide salts: Synthesis, properties and potential applications. Solid State Ionics. 2007, 178, 1143–1162. DOI: https://doi.org/10.1016/j.ssi.2007.04.016.

Crepaldi, E. L.; Pavan, P. C.; Valim, J. B. Anion exchange in layered double hydroxides by surfactant salt formation. J. Mater. Chem. 2000, 10 (6), 1337–1343. DOI: https://doi.org/10.1016/j.tet.2007.04.073.

Polshettiwar, V.; Hesemann, P.; Moreau, J. J. Palladium containing nanostructured silica functionalized with pyridine sites: a versatile heterogeneous catalyst for Heck, Sonogashira, and cyanation reactions. Tetrahedron. 2007, 63 (29), 6784–6790. DOI: https://doi.org/10.1016/j.tet.2007.04.073.

Demel J.; Hynek J.; Kovar P.; Dai, Y.; Taviot-Guého C.; Demel O. et al. Insight into the Structure of Layered Zinc Hydroxide Salts Intercalated with Dodecyl Sulfate Anions. J. Phys. Chem. C. 2014. 118, 27131−27141. DOI: https://doi.org/10.1021/jp508499g.

Rojas, D. R. Hidroxisales de Ni y Zn: Propiedades de Intercambio y productos de descomposición. Tesis Doctoral. Departamento de Química Inorgánica e ingeniería Química, Universidad de Córdoba Argentina, 2005. https://www.researchgate.net/publication/232722540_Hidroxisales_de_Ni_y_Zn_Propiedades_de_intercambio_y_productos_de_descomposicion. (Consultado el 12 de noviembre de 2014).

Lin, B. N.; Huang, S. H.; Wu, W.Y.; Mou, C.Y.; Tsai, F.Y. Sonogashira reaction of aryl and heteroaryl halides with terminal alkynes catalyzed by a highly efficient and recyclable nanosized MCM-41 anchored palladium bipyridyl complex. Molecules (Basel, Switzerland). 2010, 15 (12), 9157–73. DOI: https://doi.org/10.3390/molecules15129157.

Saha, D.; Dey, R.; Ranu, B. C. A Simple and Efficient One-Pot Synthesis of Substituted Benzo[b]furans by Sonogashira Coupling-5-endo-dig Cyclization Catalyzed by Palladium Nanoparticles in Water Under Ligand- and Copper-Free Aerobic Conditions. Eur. J. Org. Chem. 2010, 31, 6067–6071. DOI: https://doi.org/10.1002/ejoc.201000980.

Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes, and bromopyridines. Tetrahedron Lett. 1975, 50, 4467–4470.

Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.;Sreedhar, B. Layered Double Hydroxide Supported Nanopalladium Catalyst for Heck-,Suzuki-, Sonogashira-, and Stille-Type Coupling Reactions of Chloroarenes. J. Am. Chem. Soc. 2002, 124 (47), 14127-14136. DOI: https://doi.org/10.1021/ja026975w

Novák, Z.; Timári, G.; Kotschy, A. The first total synthesis of Cicerfuran utilizing a one-pot synthesis of hydroxylated benzofurans. Tetrahedron. 2003, 59 (38), 7509–7513. DOI: https://doi.org/10.1016/S0040-4020(03)01170-0.

Csékei, M.; Novák, Z.; Kotschy, A. Development of a one-pot sequential Sonogashira coupling for the synthesis of benzofurans. Tetrahedron. 2008, 64 (37), 8992–8996. DOI: https://doi.org/10.1016/j.tet.2008.05.100.

Huc V.; Pelzer, K. A new specifically designed calix[8]arene for the synthesis of functionalized, nanometric and subnanometric Pd, Pt and Ru nanoparticles. J. Colloid Interface Sci. 2008, 318 (1), 1–4. DOI: https://doi.org/10.1016/j.jcis.2007.07.083.

Stevens, P. D.; Li, G.; Fan, J.; Yen, M.; Gao, Y. Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chem. Commun. (Cambridge, England). 2005, 35, 4435–4437. DOI: https://doi.org/10.1039/b505424a.

Phan, N. T. S.; Gill, C. S.; Nguyen, J. V.; Zhang, Z. J.; Jones, C. W. Expanding the utility of one-pot multistep reaction networks through compartmentation and recovery of the catalyst. Angew. Chem., Int. Ed. Engl. 2006, 45 (14), 2209–2212. DOI: https://doi.org/10.1002/ange.200503445.

Shiyong, L.; Qizhong, Z.; Zhengneng, J.; Huajiang, J.; Xuanzhen, J. Dodecylsulfate Anion Embedded Layered Double Hydroxide Supported Nanopalladium Catalyst for the Suzuki Reaction. Chin. J. Catal. 2010, 31 (5), 557–561. DOI: https://doi.org/10.1016/S1872-2067(09)60072-3.

Martínez, M.; Ocampo, R.; Ríos, L. A. Palladium nanoparticles supported on layered hydroxide salts and their use in carbon-carbon coupling organic reactions. J. Braz. Chem. Soc. 2011, 22 (12), 2322–2329. DOI: https://doi.org/10.1590/S0103-50532011001200012.

Rajamathi, J. T.; Ahmed, M. F.; Ravishankar, N.; Nethravathi, C.; Rajamathi, M. Anionic clay-Pt metal nanoparticle composite through intercalation of hexachloroplatinate in nickel zinc hydroxysalt. Solid State Sci. 2009, 11 (7), 1270–1274. DOI: https://doi.org/10.1016/j.solidstatesciences.2009.03.020.

Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Pollution Control Federation. 21ed, New York, 2005. (Citado por IDEAM Colombia Código: TP0151, versión 2, fecha de elaboración: 31/08/2007).

Kopka, H.; Beneke, K.; Lagaly, G. Anionic Surfactants between Double Metal Hydroxide Layers. J. Colloid Interface Sci. 1988. 123(2), 427-436.

Wang, Y.; Li, F.; Dong, S.; Liu, X.; Li, M. A facile approach for synthesizing Fe-based layered double hydroxides with high purity and its exfoliation. J. Colloid Interface Sci. 2016, 467, 28–34. DOI: https://doi.org/10.1016/j.jcis.2015.12.058.

Ma, R.; Liu, Z.; Takada, K.; Iyi, N. Synthesis and exfoliation of Co2+-Fe3+ layered double hydroxides: An innovative topochemical approach. J. Am. Chem. Soc. 2007, 129 (16), 5257–5263. DOI: https://doi.org/10.1021/ja0693035

Patel, K.; Kapoor, S.; Dave, D. P.; Mukherjee, T. Synthesis of Pt, Pd, Pt/Ag and Pd/Ag nanoparticles by microwave-polyol method. J. Chem. Sci. 2005, 117, 4, 311–316. DOI: https://doi.org/10.1007/BF02708443.

Liu, Z.; Ma, R.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K. et al.Synthesis, Anion Exchange, and Delamination of Co - Al Layered Double Hydroxide: Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto- Optical Studies. J. Am. Chem. Soc. 2006, 128(14), 4872–4880. DOI: https://doi.org/10.1021/ja0584471.

Martínez G. M. M. Hidroxisales de zinc como soporte de nanopartículas de paladio y su aplicación en reacciones de acoplamiento carbono-carbono. Tesis de Maestría. Departamento de Química, Universidad de Caldas, 2010.

Papp, S.; Szücs, A.; Dekany, I. Preparation of Pd0 nanoparticles stabilized by polymers and layered silicate. Appl. Clay Sci. 2001, 19 (1-6), 155–172. DOI: https://doi.org/10.1016/S0169-1317(01)00048-5

Biswick, T.; Jones, W.; Pacula, A.; Serwicka, E.; Podobinski, J. Evidence for the formation of anhydrous zinc acetate and acetic anhydride during the thermal degradation of zinc hydroxy acetate, Zn5(OH)8(CH3CO2)2.4H2O to ZnO. Solid State Sci. 2009, 11 (2), 330–335. DOI: https://doi.org/10.1016/j.solidstatesciences.2008.06.018.

Ballesteros, M. A.; Ulibarri, M. A.; Rives, V.; Barriga, C. Optimum conditions for intercalation of lacunary tungstophosphate (V) anions into layered Ni(II)-Zn(II) hydroxyacetate. J. Solid State Chem. 2008, 181 (11), 3086–3094. DOI: https://doi.org/10.1016/j.jssc.2008.07.037

Arulraj J.; Rajamathi, M. Preparation of anionic clay-birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate. J. Solid State Chem. 2013, 198, 303–307. DOI: https://doi.org/10.1016/j.jssc.2012.10.014

Choy, J.-H.; Kwon, Y.-M.; Song, S.-W.; Chang, S. H. Structural Phase Transformation of Layered Hydroxy Double Salts, Ni1-x Zn 2x(OH)2(CH3COO)2X.nH2O, Depending on Hydration Degree. Bull. Korean Chem. Soc. 1997, 18 (4), 450–453.

Nakamoto, K. Applications in Coordination Chemistry, in Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed. John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008, p 424. DOI: https://doi.org/10.1002/9780470405888.ch1

Hussein, M. Z. B.; Ghotbi, M. Y.; Yahaya, A. H.; Rahman, M. Z. Synthesis and characterization of (zinc-layered-gallate) nanohybrid using structural memory effect. Mater. Chem. Phys. 2009, 113 (1), 491–496. DOI: https://doi.org/10.1016/j.matchemphys.2008.07.127.

Taibi, M.; Ammar, S.; Jouini, N.; Fiévet, F.; Molinié, P.; Drillon, M. Layered nickel hydroxide salts: synthesis, characterization and magnetic behaviour in relation to the basal spacing. J. Mater. Chem. 2002, 12 (11), 3238–3244. DOI: https://doi.org/10.1039/B204087E.

Menezes P.; Nityashree, N. a. Mg/Al layered double hydroxide-Pt nanoparticle composite by delamination-restacking route. Appl. Nanosci. 2002, 3 (4), 321–327. DOI: https://doi.org/10.1007/s13204-012-0137-1. b. Nityashree and Rajamathi. Interstratified Composite of the Anionic Clays, Zn5(OH)8(NO3)2∙2H2O and Ni3Zn2(OH)8(NO3)2∙2H2O, by Delamination-Costacking. J. Phys. Chem. Solids. 2013, 75, (8), 1164-1168. DOI: https://doi.org/10.1016/j.jpcs.2013.03.015.

Khazaei, A.; Rahmati, S.; Saednia, S. An efficient ligand- and copper-free Sonogashira reaction catalyzed by palladium nanoparticles supported on pectin. Catal. Commun. 2013, 37, 9–13. DOI: https://doi.org/10.1007/s13204-012-0137-1.

Bhattacharya S.; Sengupta, S. Palladium catalyzed alkynylation of aryl halides (Sonogashira reaction) in water. Tetrahedron Lett. 2004, 45, (47), 8733–8736. DOI: https://doi.org/10.1016/j.tetlet.2004.09.131.

Cómo citar

IEEE

[1]
C. C. Giraldo Londoño, R. Ocampo Cardona, L. A. Ríos Vásquez, M. M. Martínez Garzón, y J. M. Aguirre Cortes, «Nanopartículas de paladio soportadas en hidroxisales laminares: uso potencial en reacciones de Sonogashira», Rev. Colomb. Quim., vol. 46, n.º 2, pp. 51–65, may 2017.

ACM

[1]
Giraldo Londoño, C.C., Ocampo Cardona, R., Ríos Vásquez, L.A., Martínez Garzón, M.M. y Aguirre Cortes, J.M. 2017. Nanopartículas de paladio soportadas en hidroxisales laminares: uso potencial en reacciones de Sonogashira. Revista Colombiana de Química. 46, 2 (may 2017), 51–65. DOI:https://doi.org/10.15446/rev.colomb.quim.v46n2.63028.

ACS

(1)
Giraldo Londoño, C. C.; Ocampo Cardona, R.; Ríos Vásquez, L. A.; Martínez Garzón, M. M.; Aguirre Cortes, J. M. Nanopartículas de paladio soportadas en hidroxisales laminares: uso potencial en reacciones de Sonogashira. Rev. Colomb. Quim. 2017, 46, 51-65.

APA

Giraldo Londoño, C. C., Ocampo Cardona, R., Ríos Vásquez, L. A., Martínez Garzón, M. M. y Aguirre Cortes, J. M. (2017). Nanopartículas de paladio soportadas en hidroxisales laminares: uso potencial en reacciones de Sonogashira. Revista Colombiana de Química, 46(2), 51–65. https://doi.org/10.15446/rev.colomb.quim.v46n2.63028

ABNT

GIRALDO LONDOÑO, C. C.; OCAMPO CARDONA, R.; RÍOS VÁSQUEZ, L. A.; MARTÍNEZ GARZÓN, M. M.; AGUIRRE CORTES, J. M. Nanopartículas de paladio soportadas en hidroxisales laminares: uso potencial en reacciones de Sonogashira. Revista Colombiana de Química, [S. l.], v. 46, n. 2, p. 51–65, 2017. DOI: 10.15446/rev.colomb.quim.v46n2.63028. Disponível em: https://revistas.unal.edu.co/index.php/rcolquim/article/view/63028. Acesso em: 18 abr. 2024.

Chicago

Giraldo Londoño, Cristian Camilo, Rogelio Ocampo Cardona, Luz Amalia Ríos Vásquez, Maby Moll Martínez Garzón, y Jhon Mauricio Aguirre Cortes. 2017. «Nanopartículas de paladio soportadas en hidroxisales laminares: uso potencial en reacciones de Sonogashira». Revista Colombiana De Química 46 (2):51-65. https://doi.org/10.15446/rev.colomb.quim.v46n2.63028.

Harvard

Giraldo Londoño, C. C., Ocampo Cardona, R., Ríos Vásquez, L. A., Martínez Garzón, M. M. y Aguirre Cortes, J. M. (2017) «Nanopartículas de paladio soportadas en hidroxisales laminares: uso potencial en reacciones de Sonogashira», Revista Colombiana de Química, 46(2), pp. 51–65. doi: 10.15446/rev.colomb.quim.v46n2.63028.

MLA

Giraldo Londoño, C. C., R. Ocampo Cardona, L. A. Ríos Vásquez, M. M. Martínez Garzón, y J. M. Aguirre Cortes. «Nanopartículas de paladio soportadas en hidroxisales laminares: uso potencial en reacciones de Sonogashira». Revista Colombiana de Química, vol. 46, n.º 2, mayo de 2017, pp. 51-65, doi:10.15446/rev.colomb.quim.v46n2.63028.

Turabian

Giraldo Londoño, Cristian Camilo, Rogelio Ocampo Cardona, Luz Amalia Ríos Vásquez, Maby Moll Martínez Garzón, y Jhon Mauricio Aguirre Cortes. «Nanopartículas de paladio soportadas en hidroxisales laminares: uso potencial en reacciones de Sonogashira». Revista Colombiana de Química 46, no. 2 (mayo 1, 2017): 51–65. Accedido abril 18, 2024. https://revistas.unal.edu.co/index.php/rcolquim/article/view/63028.

Vancouver

1.
Giraldo Londoño CC, Ocampo Cardona R, Ríos Vásquez LA, Martínez Garzón MM, Aguirre Cortes JM. Nanopartículas de paladio soportadas en hidroxisales laminares: uso potencial en reacciones de Sonogashira. Rev. Colomb. Quim. [Internet]. 1 de mayo de 2017 [citado 18 de abril de 2024];46(2):51-65. Disponible en: https://revistas.unal.edu.co/index.php/rcolquim/article/view/63028

Descargar cita

CrossRef Cited-by

CrossRef citations2

1. Rafael Marangoni, Rafael E. Carvalho, Monielly V. Machado, Vanessa B. Dos Santos, Sumbal Saba, Giancarlo V. Botteselle, Jamal Rafique. (2023). Layered Copper Hydroxide Salts as Catalyst for the “Click” Reaction and Their Application in Methyl Orange Photocatalytic Discoloration. Catalysts, 13(2), p.426. https://doi.org/10.3390/catal13020426.

2. Shirley Nakagaki, Guilherme Sippel Machado, João Felipe Stival, Everton Henrique dos Santos, Gabriel Machado Silva, Fernando Wypych. (2021). Natural and synthetic layered hydroxide salts (LHS): Recent advances and application perspectives emphasizing catalysis. Progress in Solid State Chemistry, 64, p.100335. https://doi.org/10.1016/j.progsolidstchem.2021.100335.

Dimensions

PlumX

Visitas a la página del resumen del artículo

1347

Descargas

Los datos de descargas todavía no están disponibles.