Publicado

2020-12-24

COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO

Micochemical composition and antioxidant activity of Pleurotus ostreatus mushroom in different growth stages

COMPOSIÇÃO MICROQUÍMICA E ATIVIDADE ANTIOXIDANTE DE PLEUROTUS OSTREATUS DE COGUMELO EM DIFERENTES ESTADOS DE CRESCIMENTO

DOI:

https://doi.org/10.15446/abc.v26n1.84519

Palabras clave:

antioxidante, fermentación, nutracéuticos, setas (es)
antioxidant, fermentation, nutraceuticals, mushrooms (en)

Descargas

Autores/as

Pleurotussp. es un género de basidiomicetos ampliamente distribuido a nivel mundial, con especies que revisten importancia, no solo desde el punto de vista comercial por su valor nutricional, sino también por sus propiedades medicinales. Sin embargo, aún son insuficientes los estudios micoquímicos y se desconoce su relación con las propiedades antioxidantes de bioproductos obtenidos de estas setas durante diferentes estados de crecimiento. En el presente trabajo, se determinó el contenido de proteínas, carbohidratos, azúcares reductores, fenoles totales y flavonoides, así como la actividad antioxidante in vitro(ensayos de captación de radicales DPPH y estimación del poder reductor) de extractos acuosos de Pleurotus ostreatusen dos estados de crecimiento (primordios y cuerpos fructíferos maduros) durante la fermentación sólida. El contenido de proteínas, azúcares reductores y flavonoides fue superior en el extracto acuoso de cuerpos fructíferos maduros, mientras que los carbohidratos y fenoles totales fueron mayores en el extracto de primordios. Los valores de EC50en los ensayos de DPPH y los de poder reductor fueron de 1,72 mg/mL y 3,27 mg/mL para el extracto de primordios y de 0,44 mg/mL y 0,48 mg/mL para el de cuerpos fructíferos maduros, respectivamente. Los resultados sugieren que las propiedades antioxidantes de extractos acuosos de Pleurotus ostreatus(primordios y cuerpos fructíferos maduros) reflejan las variaciones en la concentración de moléculas bioactivas, teniendo en cuenta las particularidades fisiológicas de las fases de crecimiento. Ello podría resultar de utilidad para el diseño de protocolos de obtención de bioproductos de Pleurotus ostreatuscon aplicaciones potenciales como antioxidantes en las industrias alimentaria y farmacéutica.

Pleurotussp. is a genus of Basidiomycetes widely distributed worldwide, with species that are important not only from the commercial point of view for its nutritional value, but also for their medicinal properties. However, mycochemical studies and the relationship with the antioxidant properties of bioproducts obtained from these mushrooms during different growth stages are still insufficient. In this work, the content of proteins, carbohydrates, reducing sugars, total phenols and flavonoids was determined, as well as the in vitroantioxidant activity (tests of scavenging DPPH and reducing power estimation) of aqueous extracts of Pleurotus ostreatusin different growth stages (primordia and mature fruiting bodies) during the solid fermentation. The content of proteins, reducing sugars and flavonoids was higher in the aqueous extract of mature fruiting bodies, while carbohydrates and total phenols were increased in the extract of primordia. The EC50values in the DPPH and reducing power assays were 1.72 mg/mL and 3.27 mg/mL for primordia extract and 0.44 mg/mL and 0.48 mg/mL in the case of mature fruiting bodies extract, respectively. The results suggest that the antioxidant properties of Pleurotus ostreatusaqueous extracts (primordia and mature fruiting bodies), reflected the variations in the concentration of bioactive molecules, taking into account the physiological characteristics of the growth phases. This could be useful in designing protocols for obtaining bioproducts from Pleurotus ostreatuswith potential applications as antioxidant in food and pharmaceutical industries.

Pleurotus sp é um gênero de basidiomicetos amplamente distribuíds

Referencias

Alispahic A, Šapcanin A, Salihovic M, Ramic E, Dedic A, Pazalja M. Phenolic content and antioxidant activity of mushroom extracts from Bosnian market. Glas hem tehnol Bosne Herceg.2015;44:5-8

Barros L, Ferreira MJ, Queirós B, Ferreira I, Baptista P. Total phenols, ascorbic acid, b-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem.2007a;103:413–419. Doi: https://dx.doi.org/10.1016/j.foodchem.2006.07.038 DOI: https://doi.org/10.1016/j.foodchem.2006.07.038

Barros L, Baptista P, Ferreira IC. Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem Toxicol. 2007b;45(9):1731-1737. Doi: https://dx.doi.org/10.1016/j.fct.2007.03.006 DOI: https://doi.org/10.1016/j.fct.2007.03.006

Barros L, Dueñas M, Ferreira IC, Baptista P, Santos-Buelga C. Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem Toxicol.2009;47(6):1076-1079. Doi: https://dx.doi.org/10.1016/j.fct.2009.01.039 DOI: https://doi.org/10.1016/j.fct.2009.01.039

Bermúdez RC, García N, Gross P, Serrano M. Cultivation of Pleurotus on agricultural substrates in Cuba. Micol Aplicada Int.2001;13(1):2529.

Boonsong S, Klaypradit W, Wilaipun P. Antioxidant activities of extracts from five edible mushrooms using different extractants. AGNR.2016;50:89-97. Doi: https://dx.doi.org/10.1016/j.anres.2015.07.002 DOI: https://doi.org/10.1016/j.anres.2015.07.002

Carrasco JA, Serna SO, Gutiérrez, JA. Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potential use as food ingredient. J Food Compos Anal.2017;58:69-81. Doi: https://dx.doi.org/10.1016/j.jfca.2017.01.016 DOI: https://doi.org/10.1016/j.jfca.2017.01.016

Caz V, Gil A, Largo C, Tabernero M, Santamaría M, Martin-Hernández R, et al. Modulation of cholesterol-related gene expression by dietary fiber fractions from edible mushrooms. J Agric Food Chem.2015;63(33):7371-7380. Doi: https://dx.doi.org/10.1021/acs.jafc.5b02942 DOI: https://doi.org/10.1021/acs.jafc.5b02942

Chang ST, Wasser SP. The Role of Culinary-Medicinal Mushrooms on Human Welfare with a Pyramid Model for Human Health. Int J Med Mush.2012;14(2):95-134. DOI: https://doi.org/10.1615/IntJMedMushr.v14.i2.10

Chavéz M, Díaz J, Pérez U, Delfín J. Temas de Enzimología (Tomo1), Santiago de Cuba. ENPES; 1990.

Chemat F, Vian MA, Cravotto G. Green extraction of natural products: concept and principles. Int J Mol Sci.2012;13(7),8615-8627. Doi: https://dx.doi.org/10.3390/ijms13078615 DOI: https://doi.org/10.3390/ijms13078615

Diez VA, Alvarez A. Compositional and nutritional studies on two wild edible mushrooms from northwest Spain. Food Chem.2001;75:417–422. Doi: https://dx.doi.org/10.1016/S0308-8146(01)00229-1 DOI: https://doi.org/10.1016/S0308-8146(01)00229-1

Dubois M, Gilles KA, Hamilton JK, Robers PA, Smith F. Colorimetric method for the determination of sugars and related substances. Anal Biochem.1956;28:350-356. DOI: https://doi.org/10.1021/ac60111a017

García N. Producción de setas comestibles y enzimas lacasas por fermentación en estado sólido de la pulpa de café con Pleurotus spp (tesis de doctorado). Santiago de Cuba: Centro de Estudios de Biotecnología Industrial, Facultad de Ciencias Naturales, Universidad de Oriente; 2008. 150 p.

Gargano ML, Van Griensven LJ, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP, et al. Medicinal mushrooms: Valuable biological resources of high exploitation potential. PI Biosystems.2017;151(3):548-565. Doi: https://dx.doi.org/10.1080/11263504.2017.1301590 DOI: https://doi.org/10.1080/11263504.2017.1301590

Golak I, Kałużewicz A, Spiżewski T, Siwulski M, Sobieralski K. Bioactive compounds and medicinal properties of oyster mushrooms (Pleurotus sp.). Folia Hortic. 2018;30(2):191-201. Doi: https://doi.org/10.2478/fhort-2018-0012 DOI: https://doi.org/10.2478/fhort-2018-0012

González I, Escalona HB, Ponce E, Téllez M, Gupta VK, Díaz G, et al. Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Front Microbiol.2016;7:1099. Doi: https://dx.doi.org/10.3389/fmicb.2016.01099 DOI: https://doi.org/10.3389/fmicb.2016.01099

Huang SJ, Mau JL. Antioxidant properties of methanolic extracts from Agaricus blazei with various doses of irradiation. LWT- Food Sci Technol.2006;39:707-716. Doi: https://dx.doi.org/10.1016/j.lwt.2005.06.001 DOI: https://doi.org/10.1016/j.lwt.2005.06.001

Jourdan PS, McIntosh CA, Mansell RL. Naringin levels in citrus tissues: II. Quantitative distribution of naringin in Citrus paradise MacFad. Plant Physiol.1985;77:903-908. Doi: https://dx.doi.org/10.1104/pp.77.4.903 DOI: https://doi.org/10.1104/pp.77.4.903

Kalac P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric.2013;93:209–218. Doi: https://dx.doi.org/10.1002/jsfa.5960 DOI: https://doi.org/10.1002/jsfa.5960

Khan MA, Tania M. Nutritional and medicinal importance of Pleurotus mushrooms: an overview. Food Rev Int.2012;28(3):313-329. Doi: https://dx.doi.org/10.1080/87559129.2011.637267 DOI: https://doi.org/10.1080/87559129.2011.637267

Kinge TR, Adi EM, Mih AM, Ache NA, Nji TM. Effect of substrate on the growth, nutritional and bioactive components of Pleurotus ostreatus and Pleurotus florida. Afr J Biotechnol.2016;15(27):1476-1486. Doi: https://dx.doi.org/10.5897/AJB2015.15130 DOI: https://doi.org/10.5897/AJB2015.15130

Klaus A, Kozarski M, Niksic M, Jakovljevic D, Todorovic N, Van Griensven L. Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune. LWT-Food Sci Technol.2011;44(10):2005-2011. Doi: https://dx.doi.org/10.1016/j.lwt.2011.05.010 DOI: https://doi.org/10.1016/j.lwt.2011.05.010

Koutrotsios G, Kalogeropoulos N, Stathopoulos P, Kaliora AC, Zervakis GI. Bioactive compounds and antioxidant activity exhibit high intraspecific variability in Pleurotus ostreatus mushrooms and correlate well with cultivation performance parameters. World J Microbiol Biotechnol.2017;33:98. Doi: https://dx.doi.org/10.1021/acs.jafc.8b01532 DOI: https://doi.org/10.1021/acs.jafc.8b01532

Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging.2018;13:757–772. Doi: https://dx.doi.org/10.2147/CIA.S158513 DOI: https://doi.org/10.2147/CIA.S158513

Liu J, Wu YC, Kan J, Wang Y, Jin CH. Changes in reactive oxygen species production and antioxidant enzyme activity of Agaricus bisporus harvested at different stages of maturity. J Sci Food Agric.2013;93(9):2201-2206. Doi: https://dx.doi.org/10.1016/j.fct.2012.10.014 DOI: https://doi.org/10.1016/j.fct.2012.10.014

Lowry OH, Rosenbrough NJ, Farr A, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem.1951;193:265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Manzi P, Aguzzi A, Pizzoferrato, L. Nutritional value of mushrooms widely consumed in Italy. Food Chem.2001;73:321–325. Doi: https://dx.doi.org/10.1016/S0308-8146(00)00304-6 DOI: https://doi.org/10.1016/S0308-8146(00)00304-6

Meir S, Kanner J, Akiri B, Philosoph S. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J Agr Food Chem. 1995;43:1813-1819. Doi: https://dx.doi.org/10.1021/jf00055a012 DOI: https://doi.org/10.1021/jf00055a012

Meneses ME, Martínez D, Torres N, Sánchez M, Aguilar M, Morales P, et al. Hypocholesterolemic properties and prebiotic effects of Mexican Ganoderma lucidum in C57BL/6 mice. PLoS One.2016;11,e0159631. Doi: https://dx.doi.org/10.1371/journal.pone.0159631 DOI: https://doi.org/10.1371/journal.pone.0159631

Miller G. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem.1959;31:426-428. DOI: https://doi.org/10.1021/ac60147a030

Morris HJ, Beltrán Y, Llauradó G, Batista PL, Perraud-Gaime I, García N, et al. Mycelia from Pleurotus sp (oyster mushroom): a new wave of antimicrobials, anticancer and antioxidant bio-ingredients. Int J Phytocosmetics Nat Ingredients.2017;2,14. Doi: https://dx.doi.org/10.15171/ijpni.2017.03 DOI: https://doi.org/10.15171/ijpni.2017.03

Morris HJ, Llauradó G, Beltrán Y, Lebeque Y, Fontaine R, Bermúdez RC et al. Procedimiento para la obtención de un preparado inmunocéutico de Pleurotus spp. Certificado No. 23717 (Resolución 1754/2011) Ref: 2011/1337.

Nattoh G, Musieba F, Gatebe E, Mathara J. Towards profiling differential distribution of bioactive molecules across four phenologies in Pleurotus djamor R22. Asian Pac J Trop Dis.2016;6(6):472-480. Doi: https://dx.doi.org/10.5251/abjna.2016.7.1.9.18

Okwulehie IC, Urama J, Okorie DO. Chemical composition and nutritional value of mature and young fruiting bodies of Pleurotus pulmonarius produced on Andropogon gayanus straw and Khaya ivorensis sawdust. IOSR J Pharm Biol Sci. 2014;9(3):72-77.

Palacios I, Lozano M, Moro C, Arrigo MD, Rostagno MA, Martínez JA, et al. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem.2011;128(3):674-678. Doi: https://dx.doi.org/10.1016/j.foodchem.2011.03.085 DOI: https://doi.org/10.1016/j.foodchem.2011.03.085

Pelkmans J, Lugones LG, Wösten HA. Fruiting bodies formation in basidiomicetes. 15. In Growth, differentiation and sexuality. 3rd edition. Springer International Publishing Switzerland; 2016. p. 387-405. DOI: https://doi.org/10.1007/978-3-319-25844-7_15

Radzki W, Slawinska A, Jablonska-Rys E, Gustaw W. Antioxidant capacity and polyphenolic content of dried wild edible mushrooms from Poland. Int J Med Mush. 2014;16(1):65-75. Doi: https://dx.doi.org/10.1016/j.lwt.2015.10.016 DOI: https://doi.org/10.1016/j.lwt.2015.10.016

Rahi DK, Malik D. Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. J Mycol.2016. Doi: https://dx.doi.org/10.1155/2016/7654123 DOI: https://doi.org/10.1155/2016/7654123

Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition.2017;5(2):35-46. Doi: https://doi.org/10.1016/j.phanu.2017.02.001 DOI: https://doi.org/10.1016/j.phanu.2017.02.001

Rodrigues D, Vasconcelos M, Gomes A, Freitas A, Roriz M, Duarte AC. Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae,P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus. J Food Sci Technol.2015;52(11):6927-6939. Doi: https://dx.doi.org/10.1007/s13197-015-1826-z DOI: https://doi.org/10.1007/s13197-015-1826-z

Sakamoto Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol Rev.2018;32(4):236-248. Doi: https://dx.doi.org/10.1016/j.fbr.2018.02.003 DOI: https://doi.org/10.1016/j.fbr.2018.02.003

Sałata A, Lemieszek M, Parzymies M. The nutritional and health properties of an oyster mushroom (Pleurotus ostreatus (Jacq. Fr) P. Kumm). Acta Sci Pol Hortoru.2018;17:185-197. Doi: http://dx.doi.org/10.24326/asphc.2018.2.16 DOI: https://doi.org/10.24326/asphc.2018.2.16

Sánchez C. Reactive oxygen species and antioxidant properties from mushrooms. Synth Syst Biotechnol.2017;21(1):13-22. Doi: https://dx.doi.org/10.1016/j.synbio.2016.12.001 DOI: https://doi.org/10.1016/j.synbio.2016.12.001

Selvamani S, El-Enshasy HA, Dailin DJ, Malek R, Hanapi S, Ambehabati K, et al. Antioxidant Compounds of the Edible Mushroom Pleurotus ostreatus. Int J Biotechnol Wellness Ind.2018;7(1):1-14. DOI: https://doi.org/10.6000/1927-3037.2018.07.01

Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autioxidation of soybean oil in cyclodextrin emulsion. J Agr Food Chem.1992;40:945-948. Doi: https://dx.doi.org/10.1021/jf00018a005 DOI: https://doi.org/10.1021/jf00018a005

Shukla S and Jaitly AK. Morphological and Biochemical Characterization of Different Oyster Mushroom (Pleurotus spp.) J Phytol.2011;3(8):18-20.

Slinkard K, Singleton VL. Total phenol analyses: automation and comparison with manual method. Am J Enol Vitic.1977;28:49-55.

Soares AA, Souza CGM, Daniel FM, Ferrari GP, Costa SMG, Peralta RM. Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity. Food Chem.2009;112:775–781. Doi: https://dx.doi.org/10.1016/j.foodchem.2008.05.117 DOI: https://doi.org/10.1016/j.foodchem.2008.05.117

Suárez C, Nieto IJ. Cultivo biotecnológico de macrohongos comestibles: una alternativa en la obtención de nutracéuticos. Rev Iberoam Micol.2013;30(3):1-8. Doi: https://dx.doi.org/10.1016/j.riam.2012.03.01

Sudha G, Vadivukkarasi S, Shree RBI, Lakshmanan P. Antioxidant activity of various extracts from an edible mushroom Pleurotus eous. Food Sci Biotechnol.2012;21(3):661-668. Doi: https://dx.doi.org/10.1007/s10068-012-0086-1 DOI: https://doi.org/10.1007/s10068-012-0086-1

Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol.2015.14pag. Doi: https://dx.doi.org/10.1155/2015/376387 DOI: https://doi.org/10.1155/2015/376387

Wang D, Sakoda A, Suzuki M. Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour Technol. 2001; 78(3):293-300. Doi :https://dx.doi.org/10.1016/S0960-8524(01)00002-5 DOI: https://doi.org/10.1016/S0960-8524(01)00002-5

Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol.2002,60(3),258–274. Doi: https://dx.doi.org/10.1007/s00253-002-1076-7 DOI: https://doi.org/10.1007/s00253-002-1076-7

Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem.1999;64:555-559. Doi: https://doi.org/10.1016/S0308-8146(98)00102-2 DOI: https://doi.org/10.1016/S0308-8146(98)00102-2

Zhou S, Ma F, Zhang X, Zhang J. Carbohydrate changes during growth and fruiting in Pleurotus ostreatus. Fungal Biol. 2016; 120 (6–7): 852-861. Doi:http://dx.doi.org/10.1016/j.funbio.2016.03.007 DOI: https://doi.org/10.1016/j.funbio.2016.03.007

Cómo citar

APA

Beltrán Delgado, Y., Morris Quevedo, H. J., Oliva Dominguez, D., Batista Corbal, P. y Llaurado Maury, G. (2020). COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO. Acta Biológica Colombiana, 26(1), 89–98. https://doi.org/10.15446/abc.v26n1.84519

ACM

[1]
Beltrán Delgado, Y., Morris Quevedo, H.J., Oliva Dominguez, D., Batista Corbal, P. y Llaurado Maury, G. 2020. COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO. Acta Biológica Colombiana. 26, 1 (dic. 2020), 89–98. DOI:https://doi.org/10.15446/abc.v26n1.84519.

ACS

(1)
Beltrán Delgado, Y.; Morris Quevedo, H. J.; Oliva Dominguez, D.; Batista Corbal, P.; Llaurado Maury, G. COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO. Acta biol. Colomb. 2020, 26, 89-98.

ABNT

BELTRÁN DELGADO, Y.; MORRIS QUEVEDO, H. J.; OLIVA DOMINGUEZ, D.; BATISTA CORBAL, P.; LLAURADO MAURY, G. COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO. Acta Biológica Colombiana, [S. l.], v. 26, n. 1, p. 89–98, 2020. DOI: 10.15446/abc.v26n1.84519. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/84519. Acesso em: 24 abr. 2024.

Chicago

Beltrán Delgado, Yaixa, Humberto Joaquin Morris Quevedo, Daliannis Oliva Dominguez, Pedro Batista Corbal, y Gabriel Llaurado Maury. 2020. «COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO». Acta Biológica Colombiana 26 (1):89-98. https://doi.org/10.15446/abc.v26n1.84519.

Harvard

Beltrán Delgado, Y., Morris Quevedo, H. J., Oliva Dominguez, D., Batista Corbal, P. y Llaurado Maury, G. (2020) «COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO», Acta Biológica Colombiana, 26(1), pp. 89–98. doi: 10.15446/abc.v26n1.84519.

IEEE

[1]
Y. Beltrán Delgado, H. J. Morris Quevedo, D. Oliva Dominguez, P. Batista Corbal, y G. Llaurado Maury, «COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO», Acta biol. Colomb., vol. 26, n.º 1, pp. 89–98, dic. 2020.

MLA

Beltrán Delgado, Y., H. J. Morris Quevedo, D. Oliva Dominguez, P. Batista Corbal, y G. Llaurado Maury. «COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO». Acta Biológica Colombiana, vol. 26, n.º 1, diciembre de 2020, pp. 89-98, doi:10.15446/abc.v26n1.84519.

Turabian

Beltrán Delgado, Yaixa, Humberto Joaquin Morris Quevedo, Daliannis Oliva Dominguez, Pedro Batista Corbal, y Gabriel Llaurado Maury. «COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO». Acta Biológica Colombiana 26, no. 1 (diciembre 28, 2020): 89–98. Accedido abril 24, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/84519.

Vancouver

1.
Beltrán Delgado Y, Morris Quevedo HJ, Oliva Dominguez D, Batista Corbal P, Llaurado Maury G. COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO. Acta biol. Colomb. [Internet]. 28 de diciembre de 2020 [citado 24 de abril de 2024];26(1):89-98. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/84519

Descargar cita

CrossRef Cited-by

CrossRef citations4

1. Yusufjon Gafforov, Mustafa Yamaç, Şule İnci, Sylvie Rapior, Manzura Yarasheva, Milena Rašeta. (2023). Ethnobiology of Uzbekistan. Ethnobiology. , p.1335. https://doi.org/10.1007/978-3-031-23031-8_121.

2. Silvia del Carmen Molina-Bertrán, Idelsy Chil-Núñez, Julio César Escalona-Arranz, Raimundo Nonato Picanço-Souto, Alejandro Felipe-González, Jesús García-Díaz, Paul Cos, Gabriel Llauradó-Maury, Humberto Joaquín Morris-Quevedo. (2023). BIOINSECTICIDE POTENTIAL OF ETHANOL EXTRACTS FROM Persea americana (LAURACEAE) SEEDS ON Aedes aegypti MOSQUITOES. Acta Biológica Colombiana, 28(3) https://doi.org/10.15446/abc.v28n3.96277.

3. Georgina Uriarte-Frías, Martha M. Hernández-Ortega, Gabriela Gutiérrez-Salmeán, Miriam Magale Santiago-Ortiz, Humberto J. Morris-Quevedo, Marcos Meneses-Mayo. (2021). Pre-Hispanic Foods Oyster Mushroom (Pleurotus ostreatus), Nopal (Opuntia ficus-indica) and Amaranth (Amaranthus sp.) as New Alternative Ingredients for Developing Functional Cookies. Journal of Fungi, 7(11), p.911. https://doi.org/10.3390/jof7110911.

4. Orkun Pinar, Susana Rodríguez-Couto. (2024). Biologically active secondary metabolites from white-rot fungi. Frontiers in Chemistry, 12 https://doi.org/10.3389/fchem.2024.1363354.

Dimensions

PlumX

Visitas a la página del resumen del artículo

1004

Descargas

Los datos de descargas todavía no están disponibles.