Surface Roughness Value Recommended for the Manufacture of Antibacterial Metal Surfaces: A Review
Rugosidad superficial recomendada en la manufactura de superficies metálicas antibacterianas: una revisión
DOI:
https://doi.org/10.15446/ing.investig.102345Keywords:
bacterial adhesion, metal implant surface, surface roughness, bacterial biofilm (en)adhesión bacteriana, superficie de implantes metálicos, rugosidad superficial, biofilm bacteriano (es)
Downloads
The manufacturing of antibacterial metal surfaces has been widely studied in the elaboration dental and orthopedic implants. Surface characteristics such as wettability, chemistry, electrostatics, and roughness have been described as factors for avoiding bacterial adhesion. However, surface roughness is still debated among authors regarding its effect on antibacterial surfaces. This paper reviews the existing literature to identify the recommended surface roughness values for metal implants to avoid bacterial adhesion, and it evaluates the different roughness parameters used in this regard. This compilation found no agreement when it comes to the exact roughness that a metal implant’s surface should have to avoid bacterial adhesion and the subsequent formation of biofilms. In general, different authors recommend manufacturing smooth surfaces with a nanoscale roughness, smaller than the size of the target bacterium.
La manufactura de superficies metálicas antibacterianas ha sido ampliamente estudiada en la elaboración de implantes ortopédicos y dentales. Ciertas características de las superficies, tales como mojabilidad, química, electrostática y rugosidad, han sido señaladas como factores para prevenir la adhesión bacteriana. Sin embargo, la rugosidad superficial aún se encuentra en debate en cuanto a su efecto en las superficies antibacterianas. Este artículo realiza una revisión de la literatura existente para identificar los valores de rugosidad superficial recomendados para evitar la adhesión bacteriana en implantes metálicos, y evalúa los distintos parámetros de rugosidad utilizados en este contexto. Esta compilación no encontró un consenso en términos de la rugosidad exacta que la superficie de un implante metálico debería tener para evitar la adhesión bacteriana y la posterior formación de biofilms. En términos generales, diferentes autores recomiendan manufacturar superficies con rugosidades de escala nanométrica, menores que el tamaño de la bacteria objetivo.
References
J. Palmer, S. Flint, and J. Brooks, “Bacterial cell attach-ment, the beginning of a bio-film,” J. Ind. Microbiol. Biotechnol, vol. 34, no. 9, pp. 577-588, 2007, https://doi.org/10.1007/s10295-007-0234-4
B. Bhushan and Y. C. Jung, “Natural and biomimetic artifi-cial surfaces for superhy-drophobicity, self-cleaning, low adhesion, and drag reduction,” Prog. Mater. Sci., vol. 56, no. 1. pp. 1-108, 2011. https://doi.org/10.1016/j.pmatsci.2010.04.003
World Health Organization, “Prevention of hospital-acquired infections: A practical guide,” 2002. [Online]. Available: https://iris.who.int/bitstream/handle/10665/67350/WHO_CDS_CSR_EPH_2002.12.pdf?sequence=1&isAllowed=y
P. Ginestra et al., “Post processing of 3D printed metal scaffolds: A preliminary study of antimicrobial efficiency,” Procedia Manuf., vol. ESAFORM 20, pp. 1106-1112, 2020. https://doi.org/10.1016/j.promfg.2020.04.126
S. Kumar, D. N. Roy, and V. Dey, “A comprehensive review on techniques to create the anti-microbial surface of biomaterials to intervene in biofouling,” Colloids Interface Sci. Com., vol. 43, art. 100464, 2021. https://doi.org/10.1016/j.colcom.2021.100464
R. A. Mendoza, J.-C. Hsieh, and R. D. Galiano, “The impact of biofilm formation on wound healing,” in Wound Healing – Current Perspectives, K. Hakan Dogan, Ed., Lon-don, UK: IntechOpen, 2019, pp. 3-17. https://doi.org/10.5772/intechopen.85020
Instituto Nacional de Salud, “Boletín epidemiológico. Semana epidemiológica 09,” 2021. https://doi.org/10.33610/23576189.2021.09
M. Malone et al., “The prevalence of biofilms in chronic wounds: A systematic review and meta-analysis of pub-lished data,” J. Wound Care, vol. 26, no. 1, pp. 20-25, 2017. https://doi.org/10.12968/jowc.2017.26.1.20
Boletín Epidemiógico Semanal, “Infecciones asociadas a procedimientos médicos quirúrguicos,” 2017. [Online]. Available: https://www.ins.gov.co/BibliotecaDigital/Boletin-epidemiologico-semana-25-2019.pdf
L. M. Pandey, “Design of biocompatible and self-antibacterial titanium surfaces for biomedical applications,” Curr. Opinion Biomedical Eng., vol. 25, art. 100423, 2022. https://doi.org/10.1016/j.cobme.2022.100423
D. Campoccia, L. Montanaro, and C. R. Arciola, “The significance of infection related to orthopedic devices and issues of antibiotic resistance,” Biomater., vol. 27, no. 11, pp. 2331-2339, 2006. https://doi.org/10.1016/j.biomaterials.2005.11.044
I. B. Beech, J. A. Sunner, C. R. Arciola, and P. Cristiani, “Microbially-influenced corrosion: Damage to prostheses, delight for bacteria,” Int. J. Artif. Organs, vol. 29, no. 4, pp. 443-452, 2006. https://doi.org/10.1177/039139880602900415
R. Jia, T. Unsal, D. Xu, Y. Lekbach, and T. Gu, “Microbio-logically influenced corrosion and current mitigation strategies: A state of the art review,” I. Biodeterioration Bio-degradation, vol. 137. pp. 42-58, 2019. https://doi.org/10.1016/j.ibiod.2018.11.007
Z. Yuan, Y. He, C. Lin, P. Liu, and K. Cai, “Antibacterial surface design of biomedical titanium materials for ortho-pedic applications,” J. Mater Sci. Tech., vol. 78. pp. 51-67, 2021. https://doi.org/10.1016/j.jmst.2020.10.066
M. Yang, Y. Ding, X. Ge, and Y. Leng, “Control of bacteri-al adhesion and growth on honeycomb-like patterned sur-faces,” Colloids Surf. B Biointerfaces, vol. 135, pp. 549-555, 2015. https://doi.org/10.1016/j.colsurfb.2015.08.010
K. B.-C. Justyna Mazurek-Popczyk, L. Palka, K. Arkusz, and B. Dalewski, “Personalized, 3D- printed fracture fixation plates versus commonly used orthopaedic implant materials – Biomaterials characteristics and bacterial biofilm formation,” Injury, vol. 53, no. 3, pp. 938-946, 2022. https://doi.org/10.1016/j.injury.2021.12.020
M. Lorenzetti et al., “The relationship between the nanostructure of titanium surfaces and bacterial attach-ment,” ACS Nano, vol. 31, no. 4, pp. 706-713, 2010. https://doi.org/10.1016/j.biomaterials.2009.09.081
S. Wu, B. Zhang, Y. Liu, X. Suo, and H. Li, “Influence of surface topography on bacterial adhesion: A review,” Bio-interphases, vol. 13, no. 6, art. 060801. https://doi.org/10.1116/1.5054057
S. B. Chinnaraj et al., “Modelling the combined effect of surface roughness and topography on bacterial attach-ment,” J. Mater. Sci. Tech., vol. 81, pp. 151-161, Jan. 2021. https://doi.org/10.1016/j.jmst.2021.01.011
A. Lu, Y. Gao, T. Jin, X. Luo, Q. Zeng, and Z. Shang, “Ef-fects of surface roughness and texture on the bacterial adhesion on the bearing surface of bioceramic joint im-plants: An in vitro study,” Ceram. Int., vol. 46, no. 5, pp. 6550-6559, 2020. https://doi.org/10.1016/j.ceramint.2019.11.139
Y. Ammar, D. Swailes, B. Bridgens, and J. Chen, “Influence of surface roughness on the initial formation of biofilm,” Surf. Coat. Tech., vol. 284, pp. 410-416, 2015. https://doi.org/10.1016/j.surfcoat.2015.07.062
Y. S. Huang and H. H. Huang, “Effects of clinical dental implant abutment materials and their surface characteristics on initial bacterial adhesion,” Rare Metals, vol. 38, no. 6, pp. 512-519, 2019. https://doi.org/10.1007/s12598-019-01219-0
N. Mitik-Dineva, J. Wang, R. C. Mocanasu, P. R. Stoddart, R. J. Crawford, and E. P. Ivanova, “Impact of nano-topography on bacterial attachment,” Biotech. J., vol. 3, no. 4, pp. 536-544, 2008. https://doi.org/10.1002/biot.200700244
R. Krishna Alla, K. Ginjupalli, N. Upadhya, M. Shammas, R. Krishna Ravi, and R. Sekhar, “Surface roughness of im-plants: A review,” Trends Biomater. Artif. Organs, vol. 25, no. 3, pp. 112-118, 2011. [Online]. Available: https://brnskll.com/wp-content/uploads/2019/02/taat11i3p112.pdf
G. R. M. Matos, “Surface roughness of dental implant and osseointegration,” J. Maxillofac. Oral Surg., vol. 20, no. 1, pp. 1-4, 2021. https://doi.org/10.1007/s12663-020-01437-5
B. Azarhoushang and A. Daneshi, “Work-piece surface roughness,” in Tribology and Fundamentals of Abrasive Machining Processes, 3rd ed., B. Azarhoushang, I. D. Marinescu, W. B. Rowe, B. Dimitrov, and H. Ohmori, Eds., Amsterdam, The Netherlands: Elsevier, 2022, pp. 575-590. https://doi.org/10.1016/B978-0-12-823777-9.00015-X
V. S. Lukyanov, “Surface roughness and parameters,” Precis. Eng., vol. 5, no. 3, pp. 99-100, 1983. https://doi.org/10.1016/0141-6359(83)90001-6
W. Group, “3D Roughness Metrology,” 2020[Online]. Available:. https://www.ptb.de/cms/en/ptb/fachabteilungen/abt5/fb-51/ag-514.html
“Roughness parameter,” in CIRP Encyclopedia of Production Engineering, Berlin, Heidelberg, Germany: Springer, 2019, p. 1497. https://doi.org/10.1007/978-3-662-53120-4_300588
T. Jeyapoovan and M. Murugan, “Surface roughness classification using image processing,” Measurement, vol. 46, no. 7, pp. 2065-2072, Apr. 2013. https://doi.org/10.1016/j.measurement.2013.03.014
B. Bhushan, Mordern Tribology Handbook, 1st ed., Oxford-shire, UK: Taylor & Francis Group, 2000. https://doi.org/10.1201/9780849377877
C. J. Cortés-Rodríguez, F. C. Herreño Cuestas, and I. Z. Areque-Salazar, Medición de Rugosidad Superficial 3D, 1st ed., Kassel, Germany: Kassel University Press, 2019.
Geometrical product specification (GPS). Surface texture: Areal. Part 606: Nominal characteristics of non-contact (focus varia-tion) instruments, ISO 25178-606, International Organiza-tion for Standardization, Switzerland, Jun. 2015.
P. Podulka, “Selection of methods of surface texture characterisation for reduction of the frequency‐based er-rors in the measurement and data analysis processes,” Sensors, vol. 22, no. 3, art. 791, 2022. https://doi.org/10.3390/s22030791
H. Johnson, “Surface roughness,” in Optical Properties of Surfaces, J. Vileger and D. Bedeaux, Singapore: World Sci-entific, 2001, pp. 401-429. https://doi.org/10.1142/9781860945434_0014
N. Encinas et al., “Submicrometer-sized roughness sup-presses bacteria adhesion,” ACS Appl. Mater. Interfaces, vol. 12, no. 19, pp. 21192-21200, 2020. https://doi.org/10.1021/acsami.9b22621
V. Vadillo-Rodríguez et al., “Bacterial response to spatially organized microtopographic surface patterns with na-nometer scale roughness,” Colloids Surf. B Biointerfaces, vol. 169, pp. 340-347, 2018. https://doi.org/10.1016/j.colsurfb.2018.05.038
A. Kurup, P. Dhatrak, and N. Khasnis, “Surface modifica-tion techniques of titanium and titanium alloys for bio-medical dental applications: A review,” Mater. Today Proc., vol. 39, pp. 84-90, 2020. https://doi.org/10.1016/j.matpr.2020.06.163
E. Medilanski, K. Kaufmann, L. Y. Wick, O. Wanner, and H. Harms, “Influence of the surface topography of stain-less steel on bacterial adhesion,” Biofouling, vol. 18, no. 3, pp. 193-203, 2002. https://doi.org/10.1080/08927010290011370
S. Wu, S. Altenried, A. Zogg, F. Zuber, K. Maniura-Weber, and Q. Ren, “Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and mi-crocolony formation,” ACS Omega, vol. 3, no. 6, pp. 6456-6464, 2018. https://doi.org/10.1021/acsomega.8b00769
D. H. Kang, H. Choi, Y. J. Yoo, J. H. Kim, Y. B. Park, and H. S. Moon, “Effect of polishing method on surface rough-ness and bacterial adhesion of zirconia-porcelain veneer,” Ceram. Int., vol. 43, no. 7, pp. 5382-5387, 2017. https://doi.org/10.1016/j.ceramint.2016.11.036
M. Annunziata et al., “Bacterial adhesion to direct laser metal formed and mildly acid etched implant surfaces,” Surf. Coat. Tech., vol. 328, pp. 390-397, 2017. https://doi.org/10.1016/j.surfcoat.2017.09.011
K. Yang et al., “Bacterial antiadhesion surface design: Surface patterning, roughness and wettability: A review,” J. Mater. Sci. Tech., vol. 99, pp. 82-100, 2022. https://doi.org/10.1016/j.jmst.2021.05.028
T. Wuirk, “Insect wings shred bacteria to pieces,” Nature News, Mar. 04, 2013. https://doi.org/10.1038/nature.2013.12533
G. Lazzini, A. H. A. Lutey, L. Romoli, and F. Fuso, “Molecular dynamics model for the antibactericity of textured surfaces,” Colloids Surf. B Biointerfaces, vol. 199, art. 111504, 2021. https://doi.org/10.1016/j.colsurfb.2020.111504
A. Elbourne, R. J. Crawford, and E. P. Ivanova, “Nano-structured antimicrobial surfaces: From nature to synthet-ic analogues,” J. Colloid Interface Sci., vol. 508, pp. 603-616, 2017. https://doi.org/10.1016/j.jcis.2017.07.021
T. Dantas et al., “Bacteria co-culture adhesion on different texturized zirconia surfaces,” J. Mech. Behav. Biomed. Ma-ter., vol. 123, art. 104786, 2021. https://doi.org/10.1016/j.jmbbm.2021.104786
L. Yin, Y. Nakanishi, A. R. Alao, X. F. Song, J. Abduo, and Y. Zhang, “A review of engineered zirconia surfaces in bi-omedical applications,” Procedia CIRP, vol. 65, pp. 284-290. https://doi.org/10.1016/j.procir.2017.04.057
U. Filipović, R. G. Dahmane, S. Ghannouchi, A. Zore, and K. Bohinc, “Bacterial adhesion on orthopedic implants,” Adv. Colloid Interface Sci., vol. 283, art. 102228, 2020. https://doi.org/10.1016/j.cis.2020.102228
N. J. Bassous, C. L. Jones, and T. J. Web-ster, “3D printed Ti-6Al-4V scaffolds for supporting osteoblast and restricting bacterial functions without using drugs: Predictive equations and experiments,” Acta Biomater., vol. 96, pp. 662-673, 2019. https://doi.org/10.1016/j.actbio.2019.06.055
H. L. Huang, Y. Y. Chang, M. C. Lai, C. R. Lin, C. H. Lai, and T. M. Shieh, “Antibacterial TaN-Ag coatings on titani-um dental implants,” Surf. Coat. Tech., vol. 205, no. 5, pp. 1636-1641, 2010. https://doi.org/10.1016/j.surfcoat.2010.07.096
L. C. D. M. Dantas, J. P. Da Silva-Neto, T. S. Dantas, L. Z. Naves, F. D. Das Neves, and A. S. Da Mota, “Bacterial ad-hesion and surface roughness for different clinical tech-niques for acrylic polymethyl methacrylate,” Int. J. Dent., vol. 2016, art. 8685796, 2016. https://doi.org/10.1155/2016/8685796
C. Lüdecke, M. Roth, W. Yu, U. Horn, J. Bossert, and K. D. Jandt, “Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhe-sion points,” Colloids Surf. B Biointerfaces, vol. 145, pp. 617-625, 2016. https://doi.org/10.1016/j.colsurfb.2016.05.049
C. Lüdecke, J. Bossert, M. Roth, and K. D. Jandt, “Physical vapor deposited titanium thin films for biomedical applica-tions: Re-producibility of nanoscale surface rough-ness and microbial adhesion properties,” Appl. Surf. Sci., vol. 280, pp. 578-589, 2013. https://doi.org/10.1016/j.apsusc.2013.05.030
K. Harawaza, B. Cousins, P. Roach, and A. Fernandez, “Modification of the surface nanotopography of implant devices: A translational perspective,” Mater. Today Bio, vol. 12, no. 12, art. 100152, 2021. https://doi.org/10.1016/j.mtbio.2021.100152
J. Alipal et al., “An updated review on surface functionalisa-tion of titanium and its alloys for implants applications,” Mater. Today Proc., vol. 42, pp. 270-282, 2019. https://doi.org/10.1016/j.matpr.2021.01.499
S. Al-Amshawee, M. Y. B. M. Yunus, J. G. Lynam, W. H. Lee, F. Dai, and I. H. Dakhil, “Roughness and wettability of biofilm carriers: A systematic review,” Environ. Tech. In-nov., vol. 21, art. 101233, 2021. https://doi.org/10.1016/j.eti.2020.101233
R. J. Crawford, H. K. Webb, V. K. Truong, J. Hasan, and E. P. Ivanova, “Surface topographical factors influencing bacterial attachment,” Adv. Colloid. Interface Sci., vol. 179, no. 182, pp. 142-149, 2012. https://doi.org/10.1016/j.cis.2012.06.015
K. Koyama, H. Abe, S. Kawamura, and S. Koseki, “Sto-chastic simulation for death probability of bacterial popu-lation considering variability in individual cell inactivation time and initial number of cells,” Int. J. Food Microbiol., vol. 290, pp. 125-131, 2019. https://doi.org/10.1016/j.ijfoodmicro.2018.10.009
L. Vepsäläinen, P. Stenberg, P. Pääkkönen, M. Kuittinen, M. Suvanto, and T. A. Pakkanen, “Roughness analysis for textured surfaces over several orders of magnitudes,” Appl. Surf. Sci., vol. 284, pp. 222-228, 2013. https://doi.org/10.1016/j.apsusc.2013.07.085
M. F. Kunrath, “Customized dental implants: Manufactur-ing processes, topography, osseointegration and future perspectives of 3D fabricated implants,” Bioprinting, vol. 20, art. e00107, 2020. https://doi.org/10.1016/j.bprint.2020.e00107
M. F. Kunrath, M. S. G. Monteiro, S. Gupta, R. Hubler, and S. D. de Oliveira, “Influence of titanium and zirconia modi-fied surfaces for rapid healing on adhesion and biofilm formation of Staphylococcus epidermidis,” Arch. Oral Biol., vol. 117, no. 117, art. 104824, 2020. https://doi.org/10.1016/j.archoralbio.2020.104824
R. C. Costa et al., “Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifica-tions on bacterial accumulation and polymicrobial infec-tions,” Adv. Colloid. Interface Sci., vol. 298, art. 102551, 2021. https://doi.org/10.1016/j.cis.2021.102551
M. Annunziata et al., “Bacterial adhesion to direct laser metal formed and mildly acid etched implant surfaces,” Surf. Coat. Tech., vol. 328, pp. 390-397, 2017. https://doi.org/10.1016/j.surfcoat.2017.09.011
V. K. Truong et al., “The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained tita-nium,” Biomaterials, vol. 31, no. 13, pp. 3674-3683, 2010. https://doi.org/10.1016/j.biomaterials.2010.01.071
A. Jain, N. Kumari, S. Jagadevan, and V. Bajpai, “Surface properties and bacterial behavior of micro conical dimple textured Ti6Al4V surface through micro-milling,” Surf. In-terfaces, vol. 21, no. 21, art. 100714, 2020. https://doi.org/10.1016/j.surfin.2020.100714
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Nengqi Shao, Yulei Wang, Yipeng Wu, Wenhao Xu, Fanzhe Feng, Zhongzheng Yu, Jinlong Liang, Zhijun Cai, Xiaoqing He, Hongkang Zhou, Yi Cui, Yongqing Xu. (2025). Impact of surface roughness on the antimicrobial efficacy and cytotoxicity of SiO-ZnO coatings on mechanically abraded PET surfaces. Surface Topography: Metrology and Properties, 13(1), p.015018. https://doi.org/10.1088/2051-672X/ada6e5.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2024 Martha Patricia Calvo Correa

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.










