Published

2024-12-20

Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures

Estudio del comportamiento mecánico y refuerzo del RCSACC tras su exposición a temperaturas elevadas

DOI:

https://doi.org/10.15446/ing.investig.105573

Keywords:

mechanical properties, rapid calcium sulfoaluminate cement, copper-plated microfilament fibers, shear corrugated fibers, shrinkage (en)
propiedades mecánicas, cemento de sulfoaluminato cálcico rápido, fibras de microfilamentos recubiertos de cobre, fibras onduladas de cizallamiento, contracción (es)

Downloads

Authors

Rapid calcium sulfoaluminate cement concrete (RCSACC) has received increased attention of late because it can be manufactured with less CO2 emissions than ordinary Portland cement. In previous studies, RCSACC performed poorly when subjected to elevated temperatures, to which fiber-reinforced concrete (FRC) is a potential alternative. This study investigated the impact of incorporating two types of fibers, i.e., copper-plated steel microfilament (CPM) and shear corrugated steel (SC), on the engineering, mechanical, and microstructural features of RCSACC after exposure to elevated temperatures. Pore size distribution, microstructure, and mechanical properties were tested after exposure to temperatures of 100, 200, and 300 °C. The content of each type of fibers represented 1% of the concrete. The results showed that the mechanical properties were affected by the addition of either type of steel fibers. Adding CPM or SC steel fibers could ensure an adequate resistance of RCSACC when exposed to high temperatures, in addition to improving its residual mechanical behavior, spalling resistance, and ductility after heating. Steel fibers contribute to enhancing both mechanical properties and resistance to heating effects. However, adding steel fibers also appears to increase microstructure damage with heat, reduce workability, entrap air and water, and reduce cracking related to drying shrinkage.

Últimamente, el hormigón de cemento sulfoaluminato de calcio rápido (RCSACC) ha recibido una mayor atención porque puede fabricarse con menos emisiones de CO2 que el cemento Portland ordinario. En estudios anteriores, el RCSACC presentó un mal desempeño cuando se sometió a temperaturas elevadas, para lo cual el hormigón reforzado con fibra (FRC) es una potencial alternativa. Este estudio investigó el impacto de la incorporación de dos tipos de fibras, i.e., microfilamento de acero chapado en cobre (CPM) y acero corrugado (SC), en las características de ingeniería, mecánicas y microestructurales del RCSACC tras su exposición a temperaturas elevadas. Se probaron la distribución del tamaño de los poros, la microestructura y las propiedades mecánicas tras la exposición a temperaturas de 100, 200 y 300 °C. El contenido de cada tipo de fibras representaba el 1 % del hormigón. Los resultados mostraron que las propiedades mecánicas se vieron afectadas por la adición de cualquiera de los dos tipos de fibras de acero. La adición de fibras de acero CPM o SC podría garantizar una resistencia adecuada del RCSACC cuando se expone a altas temperaturas, además de mejorar su comportamiento mecánico residual, su resistencia al desconchado y su ductilidad después del calentamiento. Las fibras de acero contribuyen a mejorar tanto las propiedades mecánicas como la resistencia a los efectos del calentamiento. Sin embargo, la adición de fibras de acero también parece aumentar el daño a la microestructura con el calor, reducir la trabajabilidad, atrapar el aire y el agua, y reducir el agrietamiento relacionado con la contracción por secado.

References

ACI Committee (2011). ACI 214R-11 — guide to evaluation of strength test results of concrete. American Concrete Institute.

Abbass, A. A., Abid, S.R., Ali, S. H., Al-Sarray, M. L. J., Murali, G., and Nader, I. A. (2022). Post-high-temperature exposure repeated impact response of steel-fiber-reinforced concrete. Buildings, 12, 1364. https://doi.org/10.3390/buildings12091364

Abdulaziz, A., and Yousef R. A. (2022). Strength, durability and shrinkage behaviours of steel fiber reinforced rubberized con-crete. Construction and Building Materials, 345, 128295. https://doi.org/10.1016/j.conbuildmat.2022.128295

Abdulkader E M., Roland L., and Salem G. N. (2017). Mechani-cal performance of steel fiber reinforced self-compacting concrete in panels. Procedia Engineering, 196, 90-96. https://doi.org/10.1016/j.proeng.2017.07.177

Afroughsabe, V., Biolzi, L., and Ozbakkaloglu, T. (2016). High-performance fiber-reinforced concrete: A review. Journal of Materials Science, 51, 6517-6551. https://doi.org/10.1007/s10853-016-9917-4

Aguilar, M. T. P., Bezerra, A. C. S., De Figueiredo, M. A. L., Melo, P. G., Silva, M. J., Oliveira, S. N., Oliveira, L. L. M. S., Resende, D. S., and Silva, N. J. T. (2016). Evaluation of sample prepara-tion parameters in the compressive strength of cementitious composites. Materials Science Forum, 869, 93-97. https://doi.org/10.4028/www.scientific.net/MSF.869.93

Ahmed N. E. (2021). EgyGene GelAnalyzer4: A powerful image analysis software for one dimensional gel electrophoresis. Journal of Genetic Engineering and Biotechnology, 19, 18. https://doi.org/10.1186/s43141-020-00114-x

Aluko, O. G., Kadir, M. A. A., Yatim, J. M., and Yahya, K. (2020). A review of properties of bio-fibrous concrete exposed to elevated temperatures. Construction and Building Materials, 260, 11967. https://doi.org/10.1016/j.conbuildmat.2020.119671

Amin, M. N., Ahmad, W., Khan, K., and Ahmad, A. (2022). Steel fiber reinforced concrete: A systematic review of the re-search progress and knowledge mapping. Materials, 15, 6155. https://doi.org/10.3390/ma15176155

An, L. H., and Ekkehard F. (2017). Influence of steel fiber con-tent and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete. Construction and Building Materials, 153, 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130

Aravinthan, T., Ferdous, W., Ghabraie, K., Manalo, A., and Van, E G. (2018). Evaluation of an innovative composite railway sleeper for a narrow-gauge track under static load. Journal of Composites for Construction, 2, 04017050-1-13. https://doi.com/10.1061/(ASCE)CC.1943-5614.0000833

Augusto, C. S. B., Elaine, C. S. C., Maria, T. P. A., Priscilla, S. M., Paulo, R. R. S. J., and Paulo, R. C. (2019). Effect of high tem-perature on the mechanical properties of steel fiber-reinforced concrete. Fibers, 7(12),100. https://doi.org/10.3390/fib7120100

Azzabi, M., Banthia, N., and Pigeon, M. (1993). Restrained shrinkage cracking in fiber-reinforced cementitious compo-sites. Materials and Structures, 26, 405-413. https://doi.org/10.1007/BF02472941

Barreto, R. R., Bezerra, A. C. S., Maciel, P. S., Soares, J. P. R. R., Silva Neto, J. T., and Siqueira Corrêa, E. C. (2019). Thin slabs made of high-performance steel fibre-reinforced cementitious composite: Mechanical behaviour, statistical analysis and microstructural investigation. Materials, 20, 3297. https://doi.org/10.3390/ma12203297

Bai, Y., Ferdous, W., Manalo, A., Mendis, P., and Ngo, T. D. (2019). New advancements, challenges and opportunities of multi-storey modular buildings: A state-of-the-art review. Engi-neering Structure, 83, 883-893. https://doi.org/10.1016/j.engstruct.2019.01.061

Bang, Y. L., Jeong-Il C., Se-Eon P., and Yun, Y. K. (2022). Flexural behavior of composite beams of Kagome truss and fiber-reinforced cementitious composites. Construction and Build-ing Materials, 361, 129653. https://doi.org/10.1016/j.conbuildmat.2022.129653

Bibiana, L., Facundo, I., Gonzalo, R., Graciela, G., and Raúl Z. (2017). Steel fibers pull-out after exposure to high tempera-tures and its contribution to the residual mechanical behavior of high strength concrete. Construction and Building Materi-als, 163, 571-585. https://doi.org/10.1016/j.conbuildmat.2017.12.129

Bjegović, D., Baričević, A. R., Pezer, M., Serdar, M., and Štirmer, N. (2015). Shrinkage behaviour of fibre reinforced concrete with recycled tyre polymer fibres. Civil Engineering Applica-tions of Polymer Composites, 2015(1), 145918. https://doi.org/10.1155/2015/145918

Błaszczyński, T., and Przybylska, M. (2015). Steel fibre reinforced concrete as a structural material. Procedia Engineering, 11-12, 44-50 https://doi.org/10.1016/j.proeng.2015.10.037

Chang, K. H., Wang, W., Wang, H. Y., and Wang, S. Y. (2020). Effect of high temperature on the strength and thermal con-ductivity of glass fiber concrete. Construction and Building Materials, 245, 118387. https://doi.org/10.1016/j.conbuildmat.2020.118387

Chalioris, C. E., Kosmidou, P. M. K., and Karayannis, C. G. (2019). Cyclic response of steel fiber reinforced concrete slender beams; An experimental study. Materials, 12(9), 1398. https://doi.org/10.3390/ma12091398

Cheng, X., Che, J., Liu, H., Liu, N., and Zhang, M. (2020). Me-chanical performances of concrete produced with desert sand after elevated temperature. International Journal of Concrete Structures and Materials, 14, 26. https://doi.org/10.1186/s40069-020-00402-3

Cheng, X., Huang, S., Kouadjo, J. J. T., Mukhopadhyay, A. K., and Wang, S. (2020a) Compressive strength of rapid sulfoalu-minate cement concrete exposed to elevated tempera-tures. Ceramics-Silikáty, 64(3), 1-10. https://www.irsm.cas.cz/materialy/cs_content/2020_doi/Tchekwagep_CS_2020_0012.pdf

Cheng, X., Huang, S., Kouadjo, J. J. T., Mukhopadhyay, A. K., and Wang, S. (2020b). Strengths of sulfoaluminate cement concrete and ordinary portland cement concrete after ex-posure to high temperatures. Ceramics-Silikáty, 64(2), 1-9. https://www2.irsm.cas.cz/materialy/cs_content/2020_doi/Tchekwagep_CS_2020_0019.pdf

Cheng, X., Huang, S., Kouadjo, J. J. T., Mukhopadhyay, A. K., and Wang, S. (2021). The impact of extended heat exposure on rapid sulphoaluminate cement concrete up to 120°C. Pe-riodica Polytechnica Civil Engineering, 65(2), 588-607. https://doi.org/10.3311/PPci.17122

Dong D., Lingchao L., Na C., Piqi Z., Xuecheng W., Yongbo, H., and Zixu Z. (2022). Ternesite-calcium sulfoaluminate cement: Preparation and hydration. Construction and Building Materi-als, 344,128187. https://doi.org/10.1016/j.conbuildmat.2022.128187

Ferdous, W., Ghazlan, A., Mendis, P., Manalo, A., Ngo, T. D., and Nguyen, K. T. Q. (2018). Effect of fire-retardant ceram powder on the properties of phenolic-based GFRP composites. Com-posites Part B Engineering, 155, 414-424. https://doi.org/10.1016/j.compositesb.2018.09.032

Gashti, S. H., Sadrmomtazi, A., and Tahmouresi B. (2020). Resid-ual strength and microstructure of fiber reinforced self-compacting concrete exposed to high temperatures. Con-struction and Building Materials, 230, 116969. https://doi.org/10.1016/j.conbuildmat.2019.116969

Hong, S. G., Kang, S. H., Lee, J. H., and Moon, J. (2017). Micro-structural investigation of heat-treated ultra-high-performance concrete for optimum production. Materials, 10(9), 1106. https://doi.org/10.3390/ma10091106

Jacek, S., Konrad, A. S., Łukasz, K., Mariusz, S., and Sebastian, M. (2021). Impact of elevated temperatures on strength proper-ties and microstructure of calcium sulfoaluminate paste. Ma-terials, 14(22), 6751. https://doi.org/10.3390/ma14226751

Kaczmarek, Ł., Miszczak, S., Sodol, K. A., Stegliński, M., and Szer, J. (2021). The Influence of elevated temperatures on strength properties and microstructure of calcium sulfoaluminate paste. Materials, 14, 6751. https://doi.org/10.3390/ma14226751

Kohoutková, A., and Novák, J. (2017). Fiber reinforced con-crete exposed to elevated temperature. Materials Science and Engineering, 1, 012045. https://doi.org/10.1088/1757-899X/246/1/012045

Li, L. (2019). Stress-rupture of fiber-reinforced ceramic-matrix composites with stochastic loading at intermediate tempera-tures. Part I: Theoretical analysis. Materials, 12(19), 435-458. https://doi.org/10.1007/s41779-020-00549-y

Li, Y., Nguyen, H. T. N., and Tan, K. H. (2021). Shear behavior of fiber-reinforced concrete hollow-core slabs under elevated temperature. Construction and Building Materials, 275, 121362. https://doi.org/10.1016/j.conbuildmat.2020.121362

Li, Y., Tan, K. H., and Yang, E. (2020). Flexural behavior of ultra-high performance hybrid fiber reinforced concrete at the ambient and elevated temperature. Construction and Build-ing Materials, 250, 118487. https://doi.org/10.1016/j.conbuildmat.2020.118487

Mehta, P. K., and Monteiro, P. J. M. (2006). Concrete: Micro-structure, properties, and materials (3rd ed). McGraw-Hill.

Michels, J., Scherer, J., and Zwicky, D. (2016). Structural strengthening of concrete with fiber reinforced cementitious matrix (FRCM) at ambient and elevated temperature—Recent investigations. Advances in Structural Engineering, 17(12), 1785-1799. https://doi.org/10.1260/1369-4332.17.12.1785

Tanyildizi, H., and Yonar, Y. (2016). Mechanical properties of geopolymer concrete containing polyvinyl alcohol fiber ex-posed to high temperature. Construction and Building Mate-rials, 216, 381-387. https://doi.org/10.1016/j.conbuildmat.2016.09.001

Venkatesh, K., and Wasim, K. (2011). Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cement and Concrete Research, 41(11), 1112-1122. https://doi.org/10.1016/j.cemconres.2011.06.012

How to Cite

APA

Tchekwagep, J. J. K., Qui, Y., Huang, S., Wang, S. and Cheng, X. (2024). Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures. Ingeniería e Investigación, 44(3), e105573. https://doi.org/10.15446/ing.investig.105573

ACM

[1]
Tchekwagep, J.J.K., Qui, Y., Huang, S., Wang, S. and Cheng, X. 2024. Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures. Ingeniería e Investigación. 44, 3 (Dec. 2024), e105573. DOI:https://doi.org/10.15446/ing.investig.105573.

ACS

(1)
Tchekwagep, J. J. K.; Qui, Y.; Huang, S.; Wang, S.; Cheng, X. Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures. Ing. Inv. 2024, 44, e105573.

ABNT

TCHEKWAGEP, J. J. K.; QUI, Y.; HUANG, S.; WANG, S.; CHENG, X. Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures. Ingeniería e Investigación, [S. l.], v. 44, n. 3, p. e105573, 2024. DOI: 10.15446/ing.investig.105573. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/105573. Acesso em: 12 jan. 2025.

Chicago

Tchekwagep, Jean Jacques Kouadjo, Yiping Qui, Shifeng Huang, Shoude Wang, and Xin Cheng. 2024. “Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures”. Ingeniería E Investigación 44 (3):e105573. https://doi.org/10.15446/ing.investig.105573.

Harvard

Tchekwagep, J. J. K., Qui, Y., Huang, S., Wang, S. and Cheng, X. (2024) “Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures”, Ingeniería e Investigación, 44(3), p. e105573. doi: 10.15446/ing.investig.105573.

IEEE

[1]
J. J. K. Tchekwagep, Y. Qui, S. Huang, S. Wang, and X. Cheng, “Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures”, Ing. Inv., vol. 44, no. 3, p. e105573, Dec. 2024.

MLA

Tchekwagep, J. J. K., Y. Qui, S. Huang, S. Wang, and X. Cheng. “Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures”. Ingeniería e Investigación, vol. 44, no. 3, Dec. 2024, p. e105573, doi:10.15446/ing.investig.105573.

Turabian

Tchekwagep, Jean Jacques Kouadjo, Yiping Qui, Shifeng Huang, Shoude Wang, and Xin Cheng. “Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures”. Ingeniería e Investigación 44, no. 3 (December 1, 2024): e105573. Accessed January 12, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/105573.

Vancouver

1.
Tchekwagep JJK, Qui Y, Huang S, Wang S, Cheng X. Studying the Mechanical Behavior and Strengthening of RCSACC after Exposure to Elevated Temperatures. Ing. Inv. [Internet]. 2024 Dec. 1 [cited 2025 Jan. 12];44(3):e105573. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/105573

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

22

Downloads

Download data is not yet available.