Published
Evaluating the Use of Recycled Brick Powder as a Partial Replacement for Portland Cement in Concrete
Evaluación del uso del polvo reciclado de ladrillo como reemplazo parcial al cemento Portland en el hormigón
DOI:
https://doi.org/10.15446/ing.investig.107462Keywords:
workability, mechanical properties, physical properties, sustainability (en)trabajabilidad, propiedades mecánicas, propiedades físicas, sostenibilidad (es)
Downloads
Portland cement is one of the most used construction materials. However, its production represents between 5 and 7% of the total CO2 emissions. On the other hand, during construction and demolition activities, different wastes are produced, including recycled brick powder (RBP), whose potential as a supplementary cementitious material (SCM) has been demonstrated in the literature. This research aims to evaluate RBP as a partial replacement for Portland cement in concrete. 5 to 10% of Portland cement was replaced with RBP in two strength designs (20 and 25 MPa) in order to propose concretes that meet the requirements for use in construction. Tests involving slump, compressive strength, tensile strength by diametrical compression, absorption, density, and void content were performed. The results show that a 5% RBP replacement does not affect workability in concrete mixes, as it maintains their mechanical resistance and slightly improves their physical properties. On the other hand, 10% RBP replacements adversely affect workability and reduce tensile strength. These results are attributed to pozzolanic activity and the physical effect caused by RBP, whose performance may be improved by reducing RBP particles and increasing their specific surface area (SSA). Using RBP as a replacement for Portland cement to produce concrete is a viable alternative with a sustainable approach.
El cemento Portland es uno de los materiales de construcción más utilizados. Sin embargo, su producción representa entre el 5 y el 7 % de las emisiones totales de CO2. Por otro lado, durante las actividades de construcción y demolición, se producen diferentes residuos, entre ellos el polvo de ladrillo reciclado (PLR), cuyo potencial como material cementante suplementario (MCS) ha sido demostrado en la literatura. El objetivo de la presente investigación es evaluar el PLR como reemplazo parcial del cemento Portland en el hormigón. Se sustituyó 5 y 10% de cemento Portland por PLR para dos resistencias de diseño (20 y 25 MPa), a fin de proponer concretos que cumplan con los requerimientos para ser utilizados en la construcción. Se realizaron ensayos de asentamiento, resistencia a la compresión, resistencia a la tracción por compresión diametral, absorción, densidad y contenido de vacíos. Los resultados muestran que la sustitución del 5% de PLR no afecta la trabajabilidad de las mezclas, pues mantiene las resistencias mecánicas y mejora levemente las propiedades físicas. Por otro lado, las sustituciones del 10% de PLR afectan negativamente la trabajabilidad y reducen la resistencia a la tracción. Estos resultados se atribuyen a la actividad puzolánica y al efecto físico del PLR, cuyo desempeño puede ser mejorado si se reducen las partículas de PLR y se incrementa el área superficial específica (ASE). El uso de PLR como reemplazo del cemento Portland para la elaboración de hormigón es una alternativa viable con enfoque sostenible.
References
Adamson, M., Razmjoo, A., and Poursaee, A. (2015). Durabil-ity of concrete incorporating crushed brick as coarse aggre-gate. Construction and Building Materials, 94, 426-432. https://doi.org/10.1016/j.conbuildmat.2015.07.056 DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.056
American Society for Testing and Materials (2015a). ASTM C136-06. Standard test method for sieve analysis of fine and coarse aggregates. ASTM. https://doi.org/10.1520/C0136-06 DOI: https://doi.org/10.1520/C0136-06
American Society for Testing and Materials (2015b). ASTM C127-15. Standard test method for relative density (specific gravity) and absorption of coarse aggregate. ASTM. https://doi.org/10.1520/C0127-15 DOI: https://doi.org/10.1520/C0127-15
American Society for Testing and Materials (2015c). ASTM C128-15. Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM. https://doi.org/10.1520/C0128-15 DOI: https://doi.org/10.1520/C0128-15
American Society for Testing and Materials (2019). ASTM C204. Standard test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM. https://doi.org/10.1520/C0204-18E01 DOI: https://doi.org/10.1520/C0204-18E01
American Society for Testing and Materials (2021a). ASTM C595/C595M-21. standard specification for blended hydrau-lic cements. ASTM. https://doi.org/10.1520/C0595_C0595M-21 DOI: https://doi.org/10.1520/C0595_C0595M-21
American Society for Testing and Materials (2021b). ASTM C39/C39M-21. Standard test method for compressive strength of cylindrical concrete specimens. ASTM. https://doi.org/10.1520/C0039_C0039M-21 DOI: https://doi.org/10.1520/C0039_C0039M-21
American Society for Testing and Materials (2021c). ASTM C642-21. Standard test method for density, absorption, and voids in hardened concrete. ASTM. https://doi.org/10.1520/C0642-21 DOI: https://doi.org/10.1520/C0642-21
American Society for Testing and Materials (2022). ASTM C618-22. Standard specification for coal fly ash and raw or cal-cined natural pozzolan for use in concrete. ASTM: West Con-shohocken, PA, USA, 2022. https://doi.org/10.1520/C0618-22 DOI: https://doi.org/10.1520/C0618-22
Arif, R., Khitab, A., Kırgız, M. S., Khan, R. B. N., Tayyab, S., Khan, R. A., Tayyab, S., Akhtar Khan, R., Anwar, W., and Ar-shad, M. T. (2021). Experimental analysis on partial replace-ment of cement with brick powder in concrete. Case Studies in Construction Materials, 15, e00749. https://doi.org/10.1016/j.cscm.2021.e00749 DOI: https://doi.org/10.1016/j.cscm.2021.e00749
Asociación Española de Normalización (2020). UNE-EN 12350-2: Ensayos de hormigón fresco. Parte 2: ensayo de asenta-miento. UNE.
Associação Brasileira de Normas Técnicas (2011). NBR 7222: Concreto e argamassa — Determinação da resistência à tração por compressão diametral de corpos de prova cilín-dricos. ABNT.
Borges, P. M., Schiavon, J. Z., da Silva, S. R., Rigo, E., Junior, A. N., Possan, E., and de Oliveira Andrade, J. J. (2023). Mor-tars with recycled aggregate of construction and demolition waste: Mechanical properties and carbon uptake. Construc-tion and Building Materials, 387, 131600. https://doi.org/10.1016/j.conbuildmat.2023.131600 DOI: https://doi.org/10.1016/j.conbuildmat.2023.131600
Da Silva, S. R., and Andrade, J. J. D. O. (2022). A review on the effect of mechanical properties and durability of con-crete with construction and demolition waste (CDW) and fly ash in the production of new cement concrete. Sustainabi-lity, 14(11), 6740. https://doi.org/10.3390/su14116740 DOI: https://doi.org/10.3390/su14116740
da Silva, S. R., Cimadon, F. N., Borges, P. M., Schiavon, J. Z., Possan, E., and de Oliveira Andrade, J. J. (2022). Relation-ship between the mechanical properties and carbonation of concretes with construction and demolition waste. Case Studies in Construction Materials, 16, e00860. https://doi.org/10.1016/j.cscm.2021.e00860 DOI: https://doi.org/10.1016/j.cscm.2021.e00860
da Silva, S. R., de Brito, J., and de Oliveira Andrade, J. J. (2023). Synergic effect of recycled aggregate, fly ash, and hydrated lime in concrete production. Journal of Building Engineering, 70, 106370. https://doi.org/10.1016/j.jobe.2023.106370 DOI: https://doi.org/10.1016/j.jobe.2023.106370
Duan, Z., Hou, S., Xiao, J., and Li, B. (2020). Study on the es-sential properties of recycled powders from construction and demolition waste. Journal of Cleaner Production, 253, 119865. https://doi.org/10.1016/j.jclepro.2019.119865 DOI: https://doi.org/10.1016/j.jclepro.2019.119865
Gao, T., Dai, T., Shen, L., and Jiang, L. (2021). Benefits of using steel slag in cement clinker production for environmental conservation and economic revenue generation. Journal Of Cleaner Production, 282, 124538. https://doi.org/10.1016/j.jclepro.2020.124538 DOI: https://doi.org/10.1016/j.jclepro.2020.124538
Ge, P., Huang, W., Zhang, J., Quan, W., and Guo, Y. (2021). Mix proportion design method of recycled brick aggregate concrete based on aggregate skeleton theory. Construction and Building Materials, 304, 124584. https://doi.org/10.1016/j.conbuildmat.2021.124584 DOI: https://doi.org/10.1016/j.conbuildmat.2021.124584
Ge, Z., Wang, Y., Sun, R., Wu, X., and Guan, Y. (2015). Influ-ence of ground waste clay brick on properties of fresh and hardened concrete. Construction and Building Materials, 98, 128-136. https://doi.org/10.1016/j.conbuildmat.2015.08.100 DOI: https://doi.org/10.1016/j.conbuildmat.2015.08.100
Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., and Scrivener, K. L. (2020). Environmental im-pacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment, 1(11), 559-573. https://doi.org/10.1038/s43017-020-0093-3 DOI: https://doi.org/10.1038/s43017-020-0093-3
He, Z., Shen, A., Wu, H., Wang, W., Wang, L., Yao, C., and Wu, J. (2021). Research progress on recycled clay brick waste as an alternative to cement for sustainable construction materi-als. Construction and Building Materials, 274, 122113. https://doi.org/10.1016/j.conbuildmat.2020.122113 DOI: https://doi.org/10.1016/j.conbuildmat.2020.122113
IBNORCA (1987). CBH 87: Código boliviano del hormigón. Instituto Boliviano de Normalización y Calidad.
ACI (1991). Standard practice for selecting proportions for normal, heavyweight and mass concrete (ACI 211.1-91). ACI.
Irki, I., Debieb, F., Ouzadid, S., Dilmi, H. L., Settari, C., and Boukhelkhel, D. (2018). Effect of Blaine fineness of recycling brick powder replacing cementitious materials in self com-pacting mortar. Journal of adhesion science and Technolo-gy, 32(9), 963-975. https://doi.org/10.1080/01694243.2017.1393202 DOI: https://doi.org/10.1080/01694243.2017.1393202
Jiang, W., Li, X., Lv, Y., Jiang, D., Liu, Z., and He, C. (2020). Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica. Construction and Building Materials, 238, 117683. https://doi.org/10.1016/j.conbuildmat.2019.117683 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117683
Jiang, X., Xiao, R., Bai, Y., Huang, B., and Ma, Y. (2022). Influ-ence of waste glass powder as a supplementary cementi-tious material (SCM) on physical and mechanical properties of cement paste under high temperatures. Journal of Clean-er Production, 340, 130778. https://doi.org/10.1016/j.jclepro.2022.130778 DOI: https://doi.org/10.1016/j.jclepro.2022.130778
Juenger, M. C., and Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious mate-rials in concrete. Cement and Concrete Research, 78, 71-80. https://doi.org/10.1016/j.cemconres.2015.03.018 DOI: https://doi.org/10.1016/j.cemconres.2015.03.018
Juenger, M. C., Snellings, R., and Bernal, S. A. (2019). Supple-mentary cementitious materials: New sources, characteriza-tion, and performance insights. Cement and Concrete Re-search, 122, 257-273. https://doi.org/10.1016/j.cemconres.2019.05.008 DOI: https://doi.org/10.1016/j.cemconres.2019.05.008
Likes, L., Markandeya, A., Haider, M. M., Bollinger, D., McCloy, J. S., and Nassiri, S. (2022). Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete. Journal of Cleaner Production, 364, 132651. https://doi.org/10.1016/j.jclepro.2022.132651
Likes, L., Markandeya, A., Haider, M. M., Bollinger, D., McCloy, J. S., and Nassiri, S. (2022). Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete. Journal of Cleaner Production, 364, 132651. https://doi.org/10.1016/j.jclepro.2022.132651 DOI: https://doi.org/10.1016/j.jclepro.2022.132651
Liu, Q., Li, B., Xiao, J., and Singh, A. (2020). Utilization potential of aerated concrete block powder and clay brick powder from C&D waste. Construction and Building Materials, 238, 117721. https://doi.org/10.1016/j.conbuildmat.2019.117721 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117721
Luo, X., Gao, J., Li, S., Xu, Z., and Chen, G. (2022). Experi-mental study on the early-age properties of cement pastes with recycled brick powder. Construction and Building Ma-terials, 347, 128584. https://doi.org/10.1016/j.conbuildmat.2022.128584 DOI: https://doi.org/10.1016/j.conbuildmat.2022.128584
Ma, Z., Tang, Q., Wu, H., Xu, J., and Liang, C. (2020a). Me-chanical properties and water absorption of cement com-posites with various fineness and contents of waste brick powder from C&D waste. Cement and Concrete Compo-sites, 114, 103758. https://doi.org/10.1016/j.cemconcomp.2020.103758 DOI: https://doi.org/10.1016/j.cemconcomp.2020.103758
Ma, Z., Liu, M., Duan, Z., Liang, C., and Wu, H. (2020b). Effects of active waste powder obtained from C&D waste on the microproperties and water permeability of concrete. Journal of Cleaner Production, 257, 120518. https://doi.org/10.1016/j.jclepro.2020.120518 DOI: https://doi.org/10.1016/j.jclepro.2020.120518
Mohammed, T. U., Hasnat, A., Awal, M. A., and Bosunia, S. Z. (2015). Recycling of brick aggregate concrete as coarse aggregate. Journal of Materials in Civil Engineering, 27(7), B4014005. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001043 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001043
Naceri, A., and Hamina, M. C. (2009). Use of waste brick as a partial replacement of cement in mortar. Waste Manage-ment, 29(8), 2378-2384. https://doi.org/10.1016/j.wasman.2009.03.026 DOI: https://doi.org/10.1016/j.wasman.2009.03.026
Nguyen, M. H., Trinh, S. H., and Ly, H. B. (2023). Toward im-proved prediction of recycled brick aggregate concrete compressive strength by designing ensemble machine learn-ing models. Construction and Building Materials, 369, 130613. https://doi.org/10.1016/j.conbuildmat.2023.130613 DOI: https://doi.org/10.1016/j.conbuildmat.2023.130613
Ortega, J. M., Letelier, V., Solas, C., Moriconi, G., Climent, M. Á., and Sánchez, I. (2018). Long-term effects of waste brick powder addition in the microstructure and service properties of mortars. Construction and Building Materials, 182, 691-702. https://doi.org/10.1016/j.conbuildmat.2018.06.161 DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.161
Panesar, D. K., and Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Con-struction and Building Materials, 251, 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118866
Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Cheeseman, C. R., and Payá, J. (2013). Properties and mi-crostructure of alkali-activated red clay brick waste. Con-struction and Building Materials, 43, 98-106. https://doi.org/10.1016/j.conbuildmat.2013.01.031 DOI: https://doi.org/10.1016/j.conbuildmat.2013.01.031
Rocha, J. H. A., Toledo Filho, R. D., and Cayo-Chileno, N. G. (2022). Sustainable alternatives to CO2 reduction in the ce-ment industry: A short review. Materials Today, Proceedings, 52(2), 436-439. https://doi.org/10.1016/j.matpr.2021.12.565 DOI: https://doi.org/10.1016/j.matpr.2021.12.565
Schackow, A., Stringari, D., Senff, L., Correia, S. L., and Segadães, A. M. (2015). Influence of fired clay brick waste additions on the durability of mortars. Cement and Con-crete Composites, 62, 82-89. https://doi.org/10.1016/j.cemconcomp.2015.04.019 DOI: https://doi.org/10.1016/j.cemconcomp.2015.04.019
Shao, J., Gao, J., Zhao, Y., and Chen, X. (2019). Study on the pozzolanic reaction of clay brick powder in blended cement pastes. Construction and Building Materials, 213, 209-215. https://doi.org/10.1016/j.conbuildmat.2019.03.307 DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.307
Singh, N. B., and Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455. https://doi.org/10.1016/j.conbuildmat.2019.117455 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117455
Sousa, V., and Bogas, J. A. (2021). Comparison of energy consumption and carbon emissions from clinker and recy-cled cement production. Journal of Cleaner Production, 306, 127277. https://doi.org/10.1016/j.jclepro.2021.127277 DOI: https://doi.org/10.1016/j.jclepro.2021.127277
Tang, Q., Ma, Z., Wu, H., and Wang, W. (2020). The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: A critical review. Cement and Con-crete Composites, 114, 103807. https://doi.org/10.1016/j.cemconcomp.2020.103807 DOI: https://doi.org/10.1016/j.cemconcomp.2020.103807
Thomas, B. S., Yang, J., Bahurudeen, A., Abdalla, J. A., Hawileh, R. A., Hamada, H. M., Nazar, S., Jittin, V., and Ash-ish, D. K. (2021). Sugarcane bagasse ash as supplementary cementitious material in concrete–A review. Materials Today, Sustainability, 15, 100086. https://doi.org/10.1016/j.mtsust.2021.100086 DOI: https://doi.org/10.1016/j.mtsust.2021.100086
Toledo Filho, R. D., Gonçalves, J. P., Americano, B. B., and Fairbairn, E. M. R. (2007). Potential for use of crushed waste calcined-clay brick as a supplementary cementitious materi-al in Brazil. Cement and Concrete Research, 37(9), 1357-1365. https://doi.org/10.1016/j.cemconres.2007.06.005 DOI: https://doi.org/10.1016/j.cemconres.2007.06.005
Tripathy, A., and Acharya, P. K. (2022). Characterization of bagasse ash and its sustainable use in concrete as a sup-plementary binder – A review. Construction and Building Materials, 322, 126391. https://doi.org/10.1016/j.conbuildmat.2022.126391 DOI: https://doi.org/10.1016/j.conbuildmat.2022.126391
UN Environment, Scrivener, K. L., John, V. M., and Gartner, E. M. (2018). Eco-efficient cements: Potential economically via-ble solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015 DOI: https://doi.org/10.1016/j.cemconres.2018.03.015
Vieira, C. S. (2020). Valorization of fine-grain construction and demolition (C&D) waste in geosynthetic reinforced structures. Waste and Biomass Valorization, 11(4), 1615-1626. https://doi.org/10.1007/s12649-018-0480-x DOI: https://doi.org/10.1007/s12649-018-0480-x
Wang, H., Wang, L., Qian, X., Cao, K., Xu, Y., Fang, Y., and Cui, L. (2022). Hydration, compressive strength and durability of eco-friendly cement mortars containing recycled brick powder and metakaolin. KSCE Journal of Civil Engineering, 26(9), 4023-4037. https://doi.org/10.1007/s12205-022-0035-3 DOI: https://doi.org/10.1007/s12205-022-0035-3
Wong, C. L., Mo, K. H., Yap, S. P., Alengaram, U. J., and Ling, T. C. (2018). Potential use of brick waste as alternate con-crete-making materials: A review. Journal of Cleaner Pro-duction, 195, 226-239. https://doi.org/10.1016/j.jclepro.2018.05.193 DOI: https://doi.org/10.1016/j.jclepro.2018.05.193
Zhao, Y., Gao, J., Liu, C., Chen, X., and Xu, Z. (2020). The particle-size effect of waste clay brick powder on its poz-zolanic activity and properties of blended cement. Journal of Cleaner Production, 242, 118521. https://doi.org/10.1016/j.jclepro.2019.118521 DOI: https://doi.org/10.1016/j.jclepro.2019.118521
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Joaquin Humberto Aquino Rocha, Boris Marcelo Morales Ruiz, Romildo Dias Toledo Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.