Published

2024-09-04

Influence of Thermal Aging on the Sliding Wear of a Biocomposite Material Reinforced with Bamboo Fibers

Influencia del envejecimiento térmico sobre el desgaste deslizante de un material biocompuesto reforzado con fibras de bambú

DOI:

https://doi.org/10.15446/ing.investig.107624

Keywords:

polypropylene, natural fiber, bamboo, biocomposite, tribology, sliding wear, wear rate, coefficient of friction, aging (en)
polipropileno, fibra natural, bambú, biocompuesto, tribología, desgaste deslizante, tasa de desgaste, coeficiente de fricción, envejecimiento (es)

Downloads

Authors

This study evaluated the effect of thermal aging on the tribological properties of biocomposites formed by an isotactic polypropylene matrix (iPP) reinforced with 20 wt% (PP/20F), 30 wt% (PP/30F), and 40 wt% (PP/40F) of randomly oriented bamboo fibers. iPP, along with the grafting of maleic anhydride molecules (MAPP), was used as a coupling agent. The accelerated thermal aging involved the continuous heating of the materials at 98 °C for 10 days. Wear tests were performed under the Pin-on-Disk configuration to determine the wear factor (K) and the friction coefficient (µ) of the materials. After thermal aging, the µ value of the PP/20F composite increased by 40.5%, while, for raw PP, PP/30F, and PP/40F, the increase was 2.1, 7.5, and 2.2%, respectively. The aged PP/30F composite achieved the highest µ value. The loss of wear resistance due to aging was more prominent in the raw PP. The K factor of the aged and unaged PP/20F was the lowest. The use of scanning electron microscopy allowed identifying that adhesive, abrasive, and fatigue wear mechanisms were the dominant ones.

En este estudio se evaluó el efecto del envejecimiento térmico sobre las propiedades tribológicas de biocompuestos formados por una matriz de polipropileno isotáctico (iPP) reforzada con 20 wt% (PP/20F), 30 wt% (PP/30F) y 40 wt% (PP/40F) de fibras de bambú orientadas al azar. Se utilizó iPP con injertos de moléculas de anhídrido maleico (MAPP) como agente de acople. El envejecimiento térmico acelerado consistió en un calentamiento continuo de los materiales a 98 °C durante 10 días. Se realizaron ensayos de desgaste bajo la configuración Pin-on-Disk para determinar el factor de desgaste (K) y el coeficiente de fricción (µ) de los materiales. Después del envejecimiento térmico, el valor de µ del compuesto PP/20F aumentó en un 40.5 %, mientras que, para el PP puro, PP/30F y PP/40F, el aumento fue de 2.1, 7.5 y 2.2 % respectivamente. El compuesto PP/30F envejecido alcanzó el mayor valor de µ. La pérdida de la resistencia al desgaste debido al envejecimiento fue más resaltante en el PP puro. El factor K del PP/20F envejecido y no envejecido fue el más bajo. El uso de microscopía electrónica de barrido permitió identificar que los mecanismos de desgaste adhesivo, abrasivo y por fatiga fueron los dominantes.

References

ASTM International (2014). Standard test method for tensile properties of plastics (ASTM D638-14). ASTM. https://doi.org/10.1520/D0638-14

ASTM International (2017). Standard test method for wear testing with a pin-on-disk apparatus (ASTM G99-17). ASTM. https://doi.org/10.1520/G0099-17

ASTM International (2019). Standard test method for density of solid pitch (helium pycnometer method) (ASTM D4892-14(2019)e1). ASTM. https://doi.org/10.1520/D4892-14R19E01

Bajpai, P. K., Singh, I., and Madaan, J. (2012). Frictional and adhesive wear performance of natural fibre rein-forced polypropylene composites. Journal of Engi-neering Tribology, 227(4), 385-392. https://doi.org/10.1177/1350650112461868

Bhushan, B. (2013). Principles and applications of tribology. John Wiley & Sons Ltd.

Blanco, E., Fajardo, J., Carrasquero, E., Urbina, C., and León, J. B. (2020). Estudio de las propiedades a tensión de un material biocompuesto reforzado con haces de fibras cortas de bambú. Revista UIS Ingenierías, 19(3), 163-176. https://doi.org/10.18273/revuin.v19n3-2020016

Blanco-Sánchez, E., Madera-Mujica, A., Pérez-Castillo, M., Fajardo-Seminario, J., Carrasquero-Rodríguez, E., López-López, L., and Cruz-Riaño, L. (2022). Influencia del contenido de fibra y del recocido sobre las pro-piedades térmicas de un material biocompuesto re-forzado con fibras de bambú. Revista UIS Ingenierías, 21(2), 39-52. https://doi.org/10.18273/revuin.v21n2-2022004

Bartenevev, G. M., and Lavrentev, V. V. (1981). Friction and wear of polymers. Elsevier Scientific Publishing Company.

da Silva, R. L. C., da Silva, C. H., Medeiros, J. T. N. (2007). Is there delamination wear in polyurethane? Wear, 263, 974-983. https://doi.org/10.1016/j.wear.2007.01.082

Harsha, A. P., and Tewari, U. S. (2003). Two-body and three-body abrasive wear behaviour of polyarylether-ketone composites. Polymer Testing, 22(4), 403-418. https://doi.org/10.1016/S0142-9418(02)00121-6

Inácio, A. L. N, Nonato, R. C., and Bonse, B. C. (2018). Me-chanical and thermal behavior of aged composites of recycled PP/EPDM/talc reinforced with bamboo fiber. Polymer Testing, 72, 357-363. https://doi.org/10.1016/j.polymertesting.2018.10.035

International Organization for Standardization (ISO) (2011). Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics - Part 1: Standard method (ISO 1133-1:2011). ISO.

Jariwala, H., and Jain, P. (2019). A review on mechanical behavior of natural fiber reinforced polymer compo-sites and its applications. Journal of Reinforced Plas-tics and Composites, 38(10), 441-453. https://doi.org/10.1177/0731684419828524

Kerni, L., Singh, S., Patnaik, A., and Kumar, N. (2020). A review on natural fiber reinforced composites. Materials To-day: Proceedings, 28(3), 1616-1621. https://doi.org/10.1016/j.matpr.2020.04.851

Law, A., Simon, L., and Lee-Sullivan, P. (2008). Effects of ther-mal aging on isotactic polypropylene crystallinity. Polymer Engineering and Science, 48, 627-633. https://doi.org/10.1002/pen.20987

Martínez, F. J., Canales, M., Bielsa, J. M., and Jiménez, M. A. (2010). Relationship between wear rate and mechan-ical fatigue in sliding TPU–metal contacts. Wear, 268, 388-398. https://doi.org/10.1016/j.wear.2009.08.026

Mimaroglu, A., Unal, H., and Yetgin, S. H. (2018). Tribological properties of nanoclay reinforced polyamide-6/polypropylene blend. Macromolecular Symposia, 379, 1700022. https://doi.org/10.1002/masy.201700022

Narish, S., Yousif, B. F., and Rilling, D. (2011). Adhesive wear of thermoplastic composite based on kenaf fibres. Pro-ceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 225(2), 101-109. https://doi.org/10.1177/2041305X10394053

Nirmal, U., Hashim, J., and Low, K. O. (2012). Adhesive wear and frictional performance of bamboo fibres rein-forced epoxy composite. Tribology International, 47, 122-133. https://doi.org/10.1016/j.triboint.2011.10.012

Singh, T., Kumar, N., Ashok Raj, J., Grewal, J. S., Patnaik, A., and Fekete, G. (2019). Natural fiber reinforced non-asbestos brake friction composites: influence of ramie fiber on physico-mechanical and tribological properties. Materials Research Express, 6, 115701. https://doi.org/10.1088/2053-1591/ab45a4

Sınmazçelik, T., and Yılmaz, T. (2007). Thermal aging effects on mechanical and tribological performance of PEEK and short fiber reinforced PEEK composites. Materials and Design, 28(2), 641-648. https://doi.org/10.1016/j.matdes.2005.07.007

Yallew, T. B., Kumar, P., and Singh, I. (2014). Sliding wear properties of jute fabric reinforced polypropylene composites. Procedia Engineering 97, 402-411. https://doi.org/10.1016/j.proeng.2014.12.264

Yousif, B. F., and El-Tayeb, N. S. M.; (2007). Tribological evalua-tions of polyester composites considering three orien-tations of CSM glass fibres using BOR machine. Ap-plied Composite Materials, 14(2), 105-116. https://doi.org/10.1007/s10443-007-9034-2

How to Cite

APA

Blanco, E., Fajardo, J., Carrasquero, E., Urbina, C., López, L. and Cruz, L. (2024). Influence of Thermal Aging on the Sliding Wear of a Biocomposite Material Reinforced with Bamboo Fibers. Ingeniería e Investigación, 44(2), e107624. https://doi.org/10.15446/ing.investig.107624

ACM

[1]
Blanco, E., Fajardo, J., Carrasquero, E., Urbina, C., López, L. and Cruz, L. 2024. Influence of Thermal Aging on the Sliding Wear of a Biocomposite Material Reinforced with Bamboo Fibers. Ingeniería e Investigación. 44, 2 (May 2024), e107624. DOI:https://doi.org/10.15446/ing.investig.107624.

ACS

(1)
Blanco, E.; Fajardo, J.; Carrasquero, E.; Urbina, C.; López, L.; Cruz, L. Influence of Thermal Aging on the Sliding Wear of a Biocomposite Material Reinforced with Bamboo Fibers. Ing. Inv. 2024, 44, e107624.

ABNT

BLANCO, E.; FAJARDO, J.; CARRASQUERO, E.; URBINA, C.; LÓPEZ, L.; CRUZ, L. Influence of Thermal Aging on the Sliding Wear of a Biocomposite Material Reinforced with Bamboo Fibers. Ingeniería e Investigación, [S. l.], v. 44, n. 2, p. e107624, 2024. DOI: 10.15446/ing.investig.107624. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/107624. Acesso em: 19 oct. 2024.

Chicago

Blanco, Eudi, Jorge Fajardo, Edwuin Carrasquero, Caribay Urbina, Luis López, and Luis Cruz. 2024. “Influence of Thermal Aging on the Sliding Wear of a Biocomposite Material Reinforced with Bamboo Fibers”. Ingeniería E Investigación 44 (2):e107624. https://doi.org/10.15446/ing.investig.107624.

Harvard

Blanco, E., Fajardo, J., Carrasquero, E., Urbina, C., López, L. and Cruz, L. (2024) “Influence of Thermal Aging on the Sliding Wear of a Biocomposite Material Reinforced with Bamboo Fibers”, Ingeniería e Investigación, 44(2), p. e107624. doi: 10.15446/ing.investig.107624.

IEEE

[1]
E. Blanco, J. Fajardo, E. Carrasquero, C. Urbina, L. López, and L. Cruz, “Influence of Thermal Aging on the Sliding Wear of a Biocomposite Material Reinforced with Bamboo Fibers”, Ing. Inv., vol. 44, no. 2, p. e107624, May 2024.

MLA

Blanco, E., J. Fajardo, E. Carrasquero, C. Urbina, L. López, and L. Cruz. “Influence of Thermal Aging on the Sliding Wear of a Biocomposite Material Reinforced with Bamboo Fibers”. Ingeniería e Investigación, vol. 44, no. 2, May 2024, p. e107624, doi:10.15446/ing.investig.107624.

Turabian

Blanco, Eudi, Jorge Fajardo, Edwuin Carrasquero, Caribay Urbina, Luis López, and Luis Cruz. “Influence of Thermal Aging on the Sliding Wear of a Biocomposite Material Reinforced with Bamboo Fibers”. Ingeniería e Investigación 44, no. 2 (May 29, 2024): e107624. Accessed October 19, 2024. https://revistas.unal.edu.co/index.php/ingeinv/article/view/107624.

Vancouver

1.
Blanco E, Fajardo J, Carrasquero E, Urbina C, López L, Cruz L. Influence of Thermal Aging on the Sliding Wear of a Biocomposite Material Reinforced with Bamboo Fibers. Ing. Inv. [Internet]. 2024 May 29 [cited 2024 Oct. 19];44(2):e107624. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/107624

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

81

Downloads

Download data is not yet available.