Published
Perspectives in the Study of Renewable Gaseous Fuels Autoignition at Low and Moderate Temperatures
Perspectivas en el estudio de la autoignición de combustibles renovables gaseosos en temperaturas moderadas y bajas: una revisión
DOI:
https://doi.org/10.15446/ing.investig.108697Keywords:
autoignition, gaseous renewable fuels, detailed reaction mechanism, ignition delay time (en)autoignición, combustibles renovables gaseosos, mecanismo detallado de reacción, tiempo de retraso de la ignición (es)
Downloads
The increased energy demand and restrictions regarding pollutant emissions have sparked the search for different renewable energy sources, as well as for the improvement of thermal processes, with a focus on reducing the consumption of fossil fuels. Renewable gaseous fuels seem to be a promising alternative for solving this issue, along with the different high-efficiency, low-emissions technologies that operate at low and moderate temperatures (600-1000 K). However, the implementation of these approaches is limited by the autoignition phenomenon and the different difficulties in predicting its occurrence in the aforementioned operation range. To identify the reasons for this fact, we carried out a review of the different research works conducted in the field. It was evidenced that most studies focus on performing adjustment processes that require prior experimentation. This allowed identifying the need to conduct a research work focused on the autoignition phenomenon in the low and moderate temperature range while using renewable gaseous fuels, as well as on improving the predictive models for calculating ignition delay times.
El aumento en la demanda energética y las restricciones respecto a la emisión de contaminantes han suscitado la búsqueda de diferentes fuentes de energía renovables, así como del mejoramiento de los procesos térmicos enfocados en reducir el consumo de combustibles fósiles. Los combustibles renovables gaseosos se muestran como una alternativa útil para resolver este problema, al igual que diferentes tecnologías de alta eficiencia y bajas emisiones que operan a temperaturas bajas y medias (600-1000 K). Sin embargo, la implementación de estos enfoques se ve limitada por el fenómeno de autoignición y las diferentes dificultades para predecir su aparición en el mencionado rango de operación. Para identificar las razones de este último hecho, se llevó a cabo una revisión de los diferentes trabajos de investigación realizados en el área. Se evidenció que la mayoría de los estudios se centran en realizar procesos de ajuste que requieren una experimentación previa. Lo anterior permitió identificar la necesidad de llevar a cabo una investigación enfocada en el fenómeno de autoignición en el rango de bajas y medias temperaturas usando combustibles renovables gaseosos y en el mejoramiento de los modelos predictivos para el cálculo del tiempo de retraso de la ignición.
References
Amador Díaz, G. J. (2017). Auto-ignition modeling in a spark ignition internal combustion engine fueled with gaseous fuels with variable methane number [Doctoral thesis, Universidad del Norte. https://manglar.uninorte.edu.co/bitstream/handle/10584/7860/11.pdf?sequence=1&isAllowed=y
Arunachalam, A., and Olsen, D. B. (2012). Experimental eval-uation of knock characteristics of producer gas. Bio-mass and Bioenergy, 37, 169-176. https://doi.org/10.1016/j.biombioe.2011.12.016
Baigmohammadi, M., Patel, V., Nagaraja, S., Ramalingam, A., Martinez, S., Panigrahy, S., Mohamed, A. A. E. S., Somers, K. P., Burke, U., Heufer, K. A., Pekalski, A., and Curran, H. J. (2020). Comprehensive experimental and simulation study of the ignition delay time characteristics of binary blended methane, ethane, and ethylene over a wide range of temperature, pressure, equivalence ra-tio, and dilution. Energy and Fuels, 34(7), 8808-8823. https://doi.org/10.1021/acs.energyfuels.0c00960
Bansal, G., and Im, H. G. (2011). Autoignition and front prop-agation in low temperature combustion engine envi-ronments. Combustion and Flame, 158(11), 2105-2112. https://doi.org/10.1016/j.combustflame.2011.03.019
Barak, S., Pryor, O., López, J., Ninnemann, E., Vasu, S., and Koroglu, B. (2017). High-speed imaging and measure-ments of ignition delay times in oxy-syngas mixtures with high CO2 dilution in a shock tube. Journal of Engineer-ing for Gas Turbines and Power, 139(12), 1-7. https://doi.org/10.1115/1.4037458
Beerer, D. J., and McDonell, V. G. (2008). Autoignition of hy-drogen and air inside a continuous flow reactor with application to lean premixed combustion. Journal of Engineering for Gas Turbines and Power, 130(5), 051507. https://doi.org/10.1115/1.2939007
Bourque, G., Healy, D., Curran, H., Zinner, C., Kalitan, D., de Vries, J., Aul, C., and Petersen, E. (2009). Ignition and flame speed kinetics of two natural gas blends with high levels of heavier hydrocarbons. Journal of Engineering for Gas Turbines and Power, 132(2), 21504. https://doi.org/10.1115/1.3124665
Burdack, A., Duarte-Herrera, L., López-Jiménez, G., Polklas, T., and Vasco-Echeverri, O. (2023). Techno-economic cal-culation of green hydrogen production and export from Colombia. International Journal of Hydrogen Energy, 48(5), 1685-1700. https://doi.org/10.1016/J.IJHYDENE.2022.10.064
Burke, U., Somers, K. P., O’Toole, P., Zinner, C. M., Marquet, N., Bourque, G., Petersen, E. L., Metcalfe, W. K., Serinyel, Z., and Curran, H. J. (2015). An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combustion and Flame, 162(2), 315-330. https://doi.org/https://doi.org/10.1016/j.combustflame.2014.08.014
Cavaliere, D. E. E., De Joannon, M., Sabia, P., Sirignano, M., and D’Anna, A. (2010). A comprehensive kinetic model-ing of ignition of syngas-air mixtures at low temperatures and high pressures. Combustion Science and Technol-ogy, 182(7), 692-701. https://doi.org/10.1080/00102200903466525
Chen, C., Pinar, M., and Stengos, T. (2020). Renewable energy consumption and economic growth nexus: Evidence from a threshold model. Energy Policy, 139, 111295. https://doi.org/https://doi.org/10.1016/j.enpol.2020.111295
Cheshmehzangi, A. (2020). COVID-19 and household energy implications: What are the main impacts on energy use? Heliyon, 6(10), e05202. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05202
Chintala, V., and Subramanian, K. A. (2017). A comprehen-sive review on utilization of hydrogen in a compression ignition engine under dual fuel mode. Renewable and Sustainable Energy Reviews, 70, 472-491. https://doi.org/10.1016/J.RSER.2016.11.247
Davidson, D. F., Shao, J. K., Choudhary, R., Mehl, M., Obrecht, N., and Hanson, R. K. (2019). Ignition delay time measurements and modeling for gasoline at very high pressures. Proceedings of the Combustion Institute, 37(4), 4885-4892. https://doi.org/10.1016/j.proci.2018.08.032
de Vries, J., and Petersen, E. L. L. (2007). Autoignition of me-thane-based fuel blends under gas turbine conditions. Proceedings of the Combustion Institute, 31(2), 3163-3171. https://doi.org/10.1016/j.proci.2006.07.206
Dimitriou, P., and Javaid, R. (2020). A review of ammonia as a compression ignition engine fuel. International Journal of Hydrogen Energy, 45(11), 7098-7118. https://doi.org/10.1016/J.IJHYDENE.2019.12.209
Donato, N., Aul, C., Petersen, E., Zinner, C., Curran, H., and Bourque, G. (2010). Ignition and oxidation of 50/50 bu-tane isomer blends. Journal of Engineering for Gas Tur-bines and Power, 132(5), 051502. https://doi.org/10.1115/1.3204654
Donohoe, N., Heufer, A., Metcalfe, W. K., Curran, H. J., Davis, M. L., Mathieu, O., Plichta, D., Morones, A., Petersen, E. L., and Güthe, F. (2014). Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures. Combus-tion and Flame, 161(6), 1432-1443. https://doi.org/10.1016/J.COMBUSTFLAME.2013.12.005
Elsemary, I. M. M., Attia, A. A. A., Elnagar, K. H., and Elaraqy, A. A. M. (2016). Experimental investigation on perfor-mance of single cylinder spark ignition engine fueled with hydrogen-gasoline mixture. Applied Thermal Engi-neering, 106, 850-854. https://doi.org/10.1016/j.applthermaleng.2016.05.177
Goldsborough, S. S., Hochgreb, S., Vanhove, G., Wooldridge, M. S., Curran, H. J., and Sung, C. J. (2017). Advances in rapid compression machine studies of low- and inter-mediate-temperature autoignition phenomena. Progress in Energy and Combustion Science, 63, 1-78. https://doi.org/10.1016/j.pecs.2017.05.002
Gómez Montoya, J. P., Amell, A. A., and Olsen, D. B. (2016). Prediction and measurement of the critical compression ratio and methane number for blends of biogas with methane, propane and hydrogen. Fuel, 186, 168-175. https://doi.org/10.1016/J.FUEL.2016.08.064
Grangeia, C., Santos, L., Ferreira, D. V., Guimarães, R., de Magalhães Ozorio, L., and Tavares, A. (2023). Energy transition scenarios in the transportation sector in Brazil: Contributions from the electrical mobility. Energy Policy, 174, 113434. https://doi.org/10.1016/J.ENPOL.2023.113434
Healy, D., Donato, N. S., Aul, C. J., Petersen, E. L., Zinner, C. M., Bourque, G., and Curran, H. J. (2010a). Isobutane ignition delay time measurements at high pressure and detailed chemical kinetic simulations. Combustion and Flame, 157(8), 1540-1551. https://doi.org/10.1016/j.combustflame.2010.01.011
Healy, D., Donato, N. S., Aul, C. J., Petersen, E. L., Zinner, C. M., Bourque, G., and Curran, H. J. (2010b). n-Butane: Ignition delay measurements at high pressure and de-tailed chemical kinetic simulations. Combustion and Flame, 157(8), 1526-1539. https://doi.org/10.1016/j.combustflame.2010.01.016
Healy, D., Kalitan, D. M., Aul, C. J., Petersen, E. L., Bourque, G., and Curran, H. J. (2010). Oxidation of C1−C5 alkane quinternary natural gas mixtures at high pressures. Ener-gy & Fuels, 24(3), 1521-1528. https://doi.org/10.1021/ef9011005
Healy, D., M. Kopp, M., L. Polley, N., L. Petersen, E., Bourque, G., and J. Curran, H. (2010). Methane/n-butane ignition delay measurements at high pressure and detailed chemical kinetic simulations. Energy & Fuels, 24(3), 1617-1627. https://doi.org/10.1021/ef901292j
Hu, E., Pan, L., Gao, Z., Lu, X., Meng, X., and Huang, Z. (2016). Shock tube study on ignition delay of hydrogen and evaluation of various kinetic models. International Journal of Hydrogen Energy, 41(30), 13261-13280. https://doi.org/10.1016/j.ijhydene.2016.05.118
Huang, J., Bushe, W. K., Hill, P. G., and Munshi, S. R. (2006). Experimental and kinetic study of shock initiated ignition in homogeneous methane–hydrogen–air mixtures at engine-relevant conditions. International Journal of Chemical Kinetics, 38(4), 221-233. https://doi.org/https://doi.org/10.1002/kin.20157
Im, H. G., Pal, P., Wooldridge, M. S., and Mansfield, A. B. (2015). A regime diagram for autoignition of homoge-neous reactant mixtures with turbulent velocity and temperature fluctuations. Combustion Science and Technology, 187(8), 1263-1275. https://doi.org/10.1080/00102202.2015.1034355
International Energy Agency (2016). World energy outlook 2016. US Department of Energy. https://doi.org/10.1787/weo-2016-en
International Energy Agency (2018). Energy policies beyond iea countries: Chile 2018. OECD. https://doi.org/10.1787/9789264290242-en
Jiang, Y., del Alamo, G., Gruber, A., Bothien, M. R., Seshadri, K., and Williams, F. A. (2019). A skeletal mechanism for prediction of ignition delay times and laminar premixed flame velocities of hydrogen-methane mixtures under gas turbine conditions. International Journal of Hydro-gen Energy, 44(33), 18573-18585. https://doi.org/10.1016/j.ijhydene.2019.05.068
Kalitan, D. M., Mertens, J. D., Crofton, M. W., and Petersen, E. L. (2007). Ignition and oxidation of lean CO/H2 fuel blends in air. Journal of Propulsion and Power, 23(6), 1291-1301. https://doi.org/10.2514/1.28123
Kéromnès, A., Metcalfe, W. K., Heufer, K. A., Donohoe, N., Das, A. K., Sung, C. J., Herzler, J., Naumann, C., Griebel, P., Mathieu, O., Krejci, M. C., Petersen, E. L., Pitz, W. J., and Curran, H. J. (2013). An experimental and detailed chemical kinetic modeling study of hy-drogen and syngas mixture oxidation at elevated pres-sures. Combustion and Flame, 160(6), 995-1011. https://doi.org/10.1016/J.COMBUSTFLAME.2013.01.001
Kuppa, K., Goldmann, A., and Dinkelacker, F. (2018). Predict-ing ignition delay times of C1-C3 alkanes/hydrogen blends at gas engine conditions. Fuel, 222, 859-869. https://doi.org/10.1016/J.FUEL.2018.02.064
Kuzemko, C., Bradshaw, M., Bridge, G., Goldthau, A., Jewell, J., Overland, I., Scholten, D., Van de Graaf, T., and Westphal, K. (2020). Covid-19 and the politics of sus-tainable energy transitions. Energy Research & Social Science, 68, 101685. https://doi.org/https://doi.org/10.1016/j.erss.2020.101685
Lamoureux, N., and Paillard, C.-E. (2003). Natural gas ignition delay times behind reflected shock waves: Application to modelling and safety. Shock Waves, 13(1), 57-68. https://doi.org/10.1007/s00193-003-0188-z
Lamoureux, N., Paillard, C.-E., and Vaslier, V. (2002). Low hydrocarbon mixtures ignition delay times investigation behind reflected shock waves. Shock Waves, 11(4), 309-322. https://doi.org/10.1007/s001930100108
Lee, H. C., Jiang, L. Y., and Mohamad, A. A. (2014). A review on the laminar flame speed and ignition delay time of syngas mixtures. International Journal of Hydrogen En-ergy, 39(2), 1105-1121. https://doi.org/10.1016/J.IJHYDENE.2013.10.068
Lee, H. C., Mohamad, A. A., and Jiang, L. Y. (2017). A de-tailed chemical kinetics for the combustion of H2/CO/CH4/CO2 fuel mixtures. Fuel, 193, 294-307. https://doi.org/10.1016/J.FUEL.2016.12.062
Li, H., Owens, Z. C., Davidson, D. F., and Hanson, R. K. (2008). A simple reactive gasdynamic model for the computa-tion of gas temperature and species concentrations be-hind reflected shock waves. International Journal of Chemical Kinetics, 40(4), 189-198. https://doi.org/https://doi.org/10.1002/kin.20305
Li, J., Zhao, Z., Kazakov, A., Chaos, M., Dryer, F. L., and Scire, J. I. (2007). A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. International Journal of Chemical Kinetics, 39(3), 109-136. https://doi.org/10.1002/kin.20218
Li, W., Zou, C., and Yao, H. (2023). A shock-tube and model-ing study of syngas ignition delay times in rich CO2 envi-ronment at elevated pressures. Combustion and Flame, 251, 112695. https://doi.org/10.1016/J.COMBUSTFLAME.2023.112695
Lieuwen, T., Yang, V., and Yetter, R. (2009). Synthesis gas combustion: Fundamentals and applications. CRC Press.
Lifshitz, A., Scheller, K., Burcat, A., and Skinner, G. B. (1971). Shock-tube investigation of ignition in methane-oxygen-argon mixtures. Combustion and Flame, 16(3), 311-321. https://doi.org/10.1016/S0010-2180(71)80102-5
Liu, C., Song, H., Zhang, P., Wang, Z., Wooldridge, M. S., He, X., and Suo, G. (2018). A rapid compression machine study of autoignition, spark-ignition and flame propa-gation characteristics of H2/CH4/CO/air mixtures. Com-bustion and Flame, 188, 150-161. https://doi.org/10.1016/j.combustflame.2017.09.031
Luong, M. B., Hernández Pérez, F. E., and Im, H. G. (2020). Prediction of ignition modes of NTC-fuel/air mixtures with temperature and concentration fluctuations. Combus-tion and Flame, 213, 382-393. https://doi.org/10.1016/j.combustflame.2019.12.002
Malenshek, M., and Olsen, D. B. (2009). Methane number testing of alternative gaseous fuels. Fuel, 88(4), 650-656. https://doi.org/10.1016/J.FUEL.2008.08.020
Man, X., Tang, C., Wei, L., Pan, L., and Huang, Z. (2013). Measurements and kinetic study on ignition delay times of propane/hydrogen in argon diluted oxygen. Interna-tional Journal of Hydrogen Energy, 38(5), 2523-2530. https://doi.org/10.1016/j.ijhydene.2012.12.020
Mansfield, A. B., and Wooldridge, M. S. (2014). High-pressure low-temperature ignition behavior of syngas mixtures. Combustion and Flame, 161(9), 2242-2251. https://doi.org/10.1016/J.COMBUSTFLAME.2014.03.001
McDonell, V., and Dunn-Rankin, D. (2008). Chapter 5 – Lean combustion in gas turbines. In D. Dunn-Rankin (Ed.), Lean Combustion (pp. 121-160). Academic Press. https://doi.org/http://dx.doi.org/10.1016/B978-012370619-5.50006-6
Medvedev, S. P., Agafonov, G. L., and Khomik, S. V. (2016). Low-temperature ignition delay for hydrogen–air mix-tures in light of a reaction mechanism with quantum correction. Acta Astronautica, 126, 150-153.
Metcalfe, W. K., Burke, S. M., Ahmed, S. S., and Curran, H. J. (2013). A hierarchical and comparative kinetic model-ing study of C1 − C2 hydrocarbon and oxygenated fuels. International Journal of Chemical Kinetics, 45(10), 638675. https://doi.org/https://doi.org/10.1002/kin.20802
Murugesan, R., Sirmas, N., and Radulescu, M. I. (2019). Non-equilibrium effects on thermal ignition using hard sphere molecular dynamics. Combustion and Flame, 205, 457-465. https://doi.org/10.1016/j.combustflame.2019.04.037
Pan, K., and Wallace, J. S. (2019). A low temperature natural gas reaction mechanism for compression ignition en-gine application. Combustion and Flame, 202, 334-346. https://doi.org/10.1016/j.combustflame.2019.01.024
Pang, G. A., Davidson, D. F., and Hanson, R. K. (2009). Exper-imental study and modeling of shock tube ignition de-lay times for hydrogen–oxygen–argon mixtures at low temperatures. Proceedings of the Combustion Institute, 32(1), 181-188. https://doi.org/10.1016/J.PROCI.2008.06.014
Petersen, E. L., Hall, J. M., Smith, S. D., de Vries, J., Amadio, A. R., and Crofton, M. W. (2007). Ignition of lean methane-based fuel blends at gas turbine pressures. Journal of Engineering for Gas Turbines and Power, 129(4), 937-944. https://doi.org/10.1115/1.2720543
Petersen, E. L., Kalitan, D. M., Barrett, A. B., Reehal, S. C., Mertens, J. D., Beerer, D. J., Hack, R. L., and McDonell, V. G. (2007). New syngas/air ignition data at lower tem-perature and elevated pressure and comparison to cur-rent kinetics models. Combustion and Flame, 149(1-2), 244-247. https://doi.org/10.1016/j.combustflame.2006.12.007
Prince, J. C., and Williams, F. A. (2012). Short chemical-kinetic mechanisms for low-temperature ignition of propane and ethane. Combustion and Flame, 159(7), 2336-2344. https://doi.org/10.1016/J.COMBUSTFLAME.2012.02.012
Rönn, K., Swarts, A., Kalaskar, V., Alger, T., Tripathi, R., Keskiväli, J., Kaario, O., Santasalo-Aarnio, A., Reitz, R., and Larmi, M. (2023). Low-speed pre-ignition and super-knock in boosted spark-ignition engines: A review. Pro-gress in Energy and Combustion Science, 95, 101064. https://doi.org/10.1016/J.PECS.2022.101064
Shao, J., Choudhary, R., Susa, A., Davidson, D. F., and Han-son, R. K. (2019). Shock tube study of the rate constants for H + O2+ M → HO2+ M (M = Ar, H2O, CO2, N2) at ele-vated pressures. Proceedings of the Combustion Insti-tute, 37(1), 145-152. https://doi.org/10.1016/j.proci.2018.05.077
Simsek, Y., Lorca, Á., Urmee, T., Bahri, P. A., and Escobar, R. (2019). Review and assessment of energy policy devel-opments in Chile. Energy Policy, 127, 87-101. https://doi.org/10.1016/J.ENPOL.2018.11.058
Sirmas, N., and Radulescu, M. I. (2017). Thermal ignition revisit-ed with two-dimensional molecular dynamics: Role of fluctuations in activated collisions. Combustion and Flame, 177, 79-88. https://doi.org/10.1016/j.combustflame.2016.12.010
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Jr., V. V. L., and Qin, Z. (2000). GRI-Mech 3.0. http://combustion.berkeley.edu/gri-mech/
Sung, C.-J., and Curran, H. J. (2014). Using rapid compression machines for chemical kinetics studies. Progress in Ener-gy and Combustion Science, 44(0), 1-18. https://doi.org/10.1016/j.pecs.2014.04.001
Szwaja, S., Kovacs, V. B., Bereczky, A., and Penninger, A. (2013). Sewage sludge producer gas enriched with me-thane as a fuel to a spark ignited engine. Fuel Pro-cessing Technology, 110, 160-166. https://doi.org/10.1016/j.fuproc.2012.12.008
Tang, C., Man, X., Wei, L., Pan, L., and Huang, Z. (2013). Fur-ther study on the ignition delay times of propane–hydrogen–oxygen–argon mixtures: Effect of equiva-lence ratio. Combustion and Flame, 160(11), 2283–290. https://doi.org/10.1016/j.combustflame.2013.05.012
Thi, L. D., Zhang, Y., and Huang, Z. (2014). Shock tube study on ignition delay of multi-component syngas mixtures – Ef-fect of equivalence ratio. International Journal of Hy-drogen Energy, 39(11), 6034-6043. https://doi.org/10.1016/j.ijhydene.2014.01.170
US Energy Information Administration (2016). International energy outlook 2016. US Department of Energy. https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
Vallabhuni, S. K., Lele, A. D., Patel, V., Lucassen, A., Moshammer, K., AlAbbad, M., Farooq, A., and Fer-nandes, R. X. (2018). Autoignition studies of liquefied natural gas (LNG) in a shock tube and a rapid com-pression machine. Fuel, 232, 423-430. https://doi.org/10.1016/J.FUEL.2018.04.168
Walton, S. M., He, X., Zigler, B. T., and Wooldridge, M. S. (2007). An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications. Proceedings of the Combustion Institute, 31(2), 3147-3154. https://doi.org/10.1016/j.proci.2006.08.059
Wang, B. L., Olivier, H., and Grönig, H. (2003). Ignition of shock-heated H2-air-steam mixtures. Combustion and Flame, 133(1-2), 93-106. https://doi.org/10.1016/S0010-2180(02)00552-7
Wang, B., Yang, Z., Xuan, J., and Jiao, K. (2020). Crises and opportunities in terms of energy and AI technologies during the COVID-19 pandemic. Energy and AI, 1, 100013. https://doi.org/https://doi.org/10.1016/j.egyai.2020.100013
Wang, Q., and Wang, S. (2020). Preventing carbon emission retaliatory rebound post-COVID-19 requires expanding free trade and improving energy efficiency. Science of The Total Environment, 746, 141158. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141158
Wang, S., Davidson, D. F., and Hanson, R. K. (2019). Shock tube techniques for kinetic target data to improve reac-tion models. In T. Favarelli, F. Manenti, and E. Ranzi (Eds.), Computer Aided Chemical Engineering (vol. 45, pp. 169-202). Elsevier.
Wang, Z., Liu, H., and Reitz, R. D. (2017). Knocking combustion in spark-ignition engines. Progress in Energy and Com-bustion Science, 61, 78–-12. https://doi.org/10.1016/j.pecs.2017.03.004
Warnatz, J., Maas, U., and Dibble, R. W. (1996). Combustion. Springer. https://doi.org/10.1007/978-3-642-97668-1
Wolde-Rufael, Y., and Mulat-Weldemeskel, E. (2022). The mod-erating role of environmental tax and renewable energy in CO2 emissions in Latin America and Caribbean coun-tries: Evidence from method of moments quantile re-gression. Environmental Challenges, 6, 100412. https://doi.org/10.1016/J.ENVC.2021.100412
Yu, G., Askari, O., and Metghalchi, H. (2018). Theoretical pre-diction of the effect of blending JP-8 with syngas on the ignition delay time and laminar burning speed. Journal of Energy Resources Technology, Transactions of the ASME, 140(1), 012204. https://doi.org/10.1115/1.4037376
Zádor, J., Taatjes, C. A., and Fernandes, R. X. (2011). Kinetics of elementary reactions in low-temperature autoignition chemistry. Progress in Energy and Combustion Science, 37(4), 371-421. https://doi.org/10.1016/J.PECS.2010.06.006
Zhang, Y., Huang, Z., Wei, L., Zhang, J., and Law, C. K. (2012). Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and ar-gon at elevated pressures. Combustion and Flame, 159(3), 918-931. https://doi.org/10.1016/j.combustflame.2011.09.010
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Hernando Yepes, Adalberto Salazar, José D. Yepes
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.