Published

2024-05-29

Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors

Aplicación del algoritmo de optimización por senos y cosenos al problema de estimación paramétrica en motores de inducción trifásicos

DOI:

https://doi.org/10.15446/ing.investig.110310

Keywords:

Mataheuristic optimization, electrical circuit characterization, multimodal optimization problem, manufacturer data (en)
Optimización metaheurística, caracterización de circuitos eléctricos, problema de optimización multimodal, datos del fabricante (es)

Downloads

Authors

The steady-state analysis of electrical machines requires a detailed characterization of their equivalent electrical circuit, which adequately represents the transformation and interaction between electrical and mechanical energy. This research aims to characterize the equivalent circuit of three-phase induction motors by minimizing the mean square error between the measured and calculated torque variables. These torques are obtained from data provided by the manufacturer, including starting, peak, and full-load torques. A metaheuristic optimization technique is applied to solve the resulting nonlinear programming model based on the interactions between the sine and cosine functions. The numerical results obtained with this algorithm demonstrate its efficiency in terms of response quality, reaching objective function values of less than 1×1081×108 with regard to the measured and calculated variables. Simulation results in two test systems allow concluding that the parametric estimation problem in three-phase induction motors is a multimodal optimization problem. This implies a potentially infinite set of solutions that minimize the root mean square error and adequately represent the behavior of the motor's output torque under various probable operating conditions.

El análisis del estado estacionario de las máquinas eléctricas requiere una caracterización detallada de su circuito eléctrico equivalente que represente adecuadamente la transformación y la interacción entre energía eléctrica y mecánica. El objetivo de esta investigación es caracterizar el circuito equivalente de motores de inducción trifásicos mediante la minimización del error cuadrático medio entre variables de torque medidas y calculadas. Estos torques se obtienen de datos suministrados por el fabricante, incluyendo los torques inicial, máximo y de carga plena. Se aplica una técnica de optimización metaheurística para resolver el modelo de programación no lineal resultante, que se basa en las interacciones entre las funciones de seno y coseno. Los resultados numéricos obtenidos con este algoritmo demuestran su eficiencia en términos de calidad de la respuesta, alcanzando valores de función objetivo de menos de 1×108 respecto a las variables medidas y calculadas. Los resultados de simulaciones realizadas en dos sistemas de prueba permiten concluir que el problema de estimación paramétrica en motores de inducción trifásicos es un problema de optimización multimodal. Esto implica un conjunto de soluciones potencialmente infinitas que minimizan el error cuadrático medio y representan adecuadamente el torque de salida del motor en varias condiciones probables de operación.

References

Abo-Khalil, A. G., Abdelkareem, M. A., Sayed, E. T., Maghrabie, H. M., Radwan, A., Rezk, H., & Olabi, A. G. (2022). Electric vehicle impact on energy industry, policy, technical barriers, and power systems. International Journal of Thermofluids, 13, 100134. https://doi.org/10.1016/j.ijft.2022.100134 DOI: https://doi.org/10.1016/j.ijft.2022.100134

Aminu, M. (2019). A parameter estimation algorithm for induction machines using artificial bee colony (ABC) optimization. Nigerian Journal of Technology, 38(1), 193. https://doi.org/10.4314/njt.v38i1.24 DOI: https://doi.org/10.4314/njt.v38i1.24

Attia, A.-F., Sehiemy, R. A. E., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331–343. https://doi.org/10.1016/j.ijepes.2018.01.024 DOI: https://doi.org/10.1016/j.ijepes.2018.01.024

Avalos, O., Cuevas, E., & Gálvez, J. (2016). Induction motor parameter identification using a gravitational search algorithm. Computers, 5(2), 6. https://doi.org/10.3390/computers5020006 DOI: https://doi.org/10.3390/computers5020006

Bocanegra, S. Y., Montoya, O. D., & Molina, A. (2021). Sine-cosine optimization approach applied to the parametric estimation in single-phase transformers by considering voltage and current measures. DYNA, 88(219), 19–27. https://doi.org/10.15446/dyna.v88n219.93670 DOI: https://doi.org/10.15446/dyna.v88n219.93670

Bouakkaz, A., Mena, A. J. G., Haddad, S., & Ferrari, M. L. (2021). Efficient energy scheduling considering cost reduction and energy saving in hybrid energy system with energy storage. Journal of Energy Storage, 33, 101887. https://doi.org/10.1016/j.est.2020.101887 DOI: https://doi.org/10.1016/j.est.2020.101887

Ćalasan, M., Micev, M., Ali, Z. M., Zobaa, A. F., & Aleem, S. H. E. A. (2020). Parameter estimation of induction machine single-cage and double-cage models using a hybrid simulated annealing-evaporation rate water cycle algorithm. Mathematics, 8(6), 1024. https://doi.org/10.3390/math8061024 DOI: https://doi.org/10.3390/math8061024

Chauhan, R. K., Chauhan, K., & Badar, A. Q. (2022). Optimization of electrical energy waste in house using smart appliances management system: A case study. Journal of Building Engineering, 46, 103595. https://doi.org/10.1016/j.jobe.2021.103595 DOI: https://doi.org/10.1016/j.jobe.2021.103595

Fortes, M. Z., Ferreira, V. H., & Coelho, A. P. F. (2013). The induction motor parameter estimation using genetic algorithm. IEEE Latin America Transactions, 11(5), 1273–1278. https://doi.org/10.1109/tla.2013.6684404 DOI: https://doi.org/10.1109/TLA.2013.6684404

Friederici, P. (2021). In Germany, the energy transition continues. Bulletin of the Atomic Scientists, 77(2), 82–85. https://doi.org/10.1080/00963402.2021.1885851 DOI: https://doi.org/10.1080/00963402.2021.1885851

Gupta, R. A., Wadhwani, A. K., & Kapoor, S. R. (2011). Early estimation of faults in induction motors using symbolic dynamic-based analysis of stator current samples. IEEE Transactions on Energy Conversion, 26(1), 102–114. https://doi.org/10.1109/tec.2010.2062514 DOI: https://doi.org/10.1109/TEC.2010.2062514

Gulbahçe, M. O., & Karaaslan, M. E. (2021). Estimation of induction motor equivalent circuit parameters from manufacturer’s datasheet by particle swarm optimization algorithm for variable frequency drives. Electrica, 22(1), 16–26. https://doi.org/10.5152/electrica.2021.21122 DOI: https://doi.org/10.5152/electrica.2021.21122

Huynh, D. C., & Dunnigan, M. W. (2010). Parameter estimation of an induction machine using a dynamic particle swarm optimization algorithm. In 2010 IEEE International Symposium on Industrial Electronics. IEEE. https://doi.org/10.1109/isie.2010.5637818 DOI: https://doi.org/10.1109/ISIE.2010.5637818

Lindenmeyer, D., Dommel, H., Moshref, A., & Kundur, P. (2001). An induction motor parameter estimation method. International Journal of Electrical Power & Energy Systems, 23(4), 251–262. https://doi.org/10.1016/s0142-0615(00)00060-0 DOI: https://doi.org/10.1016/S0142-0615(00)00060-0

Mohammadi, H. R., & Akhavan, A. (2014). Parameter estimation of three-phase induction motor using hybrid of genetic algorithm and particle swarm optimization. Journal of Engineering, 2014, 1–6. https://doi.org/10.1155/2014/148204 DOI: https://doi.org/10.1155/2014/148204

Montoya, O. D., Gil-González, W., & Grisales-Noreña, L. F. (2020). Sine-cosine algorithm for parameters’ estimation in solar cells using datasheet information. Journal of Physics: Conference Series, 1671(1), 012008. https://doi.org/10.1088/1742-6596/1671/1/012008 DOI: https://doi.org/10.1088/1742-6596/1671/1/012008

Nota, G., Nota, F. D., Peluso, D., & Lazo, A. T. (2020). Energy efficiency in industry 4.0: The case of batch production processes. Sustainability, 12(16), 6631. https://doi.org/10.3390/su12166631 DOI: https://doi.org/10.3390/su12166631

Payán, M. B., Fernandez, J. M. R., Ortega, J. M. M., & Santos, J. M. R. (2019). Techno-economic optimal power rating of induction motors. Applied Energy, 240, 1031–1048. https://doi.org/10.1016/j.apenergy.2019.02.016 DOI: https://doi.org/10.1016/j.apenergy.2019.02.016

Pedra, J., & Corcoles, F. (2004). Estimation of induction motor double-cage model parameters from manufacturer data. IEEE Transactions on Energy Conversion, 19(2), 310–317. https://doi.org/10.1109/tec.2003.822314 DOI: https://doi.org/10.1109/TEC.2003.822314

Rengifo-Santana, J. W., Benzaquen-Suné, J., Aller-Castro, J. M., Bueno-Montilla, A. A., & Restrepo-Zambrano, J. A. (2015). Parameter estimation method for induction machines using instantaneous voltage and current measurements. Revista Facultad de Ingeniería Universidad de Antioquia, 75, 57–66. https://doi.org/10.17533/udea.redin.n75a07 DOI: https://doi.org/10.17533/udea.redin.n75a07

Sengamalai, U., Anbazhagan, G., Thentral, T. M. T., Vishnuram, P., Khurshaid, T., & Kamel, S. (2022). Three phase induction motor drive: A systematic review on dynamic modeling, parameter estimation, and control schemes. Energies, 15(21), 8260. https://doi.org/10.3390/en15218260 DOI: https://doi.org/10.3390/en15218260

Toliyat, H., Levi, E., & Raina, M. (2003). A review of RFO induction motor parameter estimation techniques. IEEE Transactions on Energy Conversion, 18(2), 271–283. https://doi.org/10.1109/tec.2003.811719 DOI: https://doi.org/10.1109/TEC.2003.811719

Trisha, Gupta, G. S., & Kumar, S. S. (2021). Review of the parameter estimation and transient analysis of three-phase induction motor. In M. J. B. Reddy, D. K. Mohanta, D. Kumar, & D. Ghosh (Eds.), Advances in smart grid automation and Industry 4.0 (pp. 223–232). Springer Singapore. https://doi.org/10.1007/978-981-15-7675-1_21 DOI: https://doi.org/10.1007/978-981-15-7675-1_21

Véliz-Tejo, A., Travieso-Torres, J. C., Peters, A. A., Mora, A., & Leiva-Silva, F. (2022). Normalized-model reference system for parameter estimation of induction motors. Energies, 15(13), 4542. https://doi.org/10.3390/en15134542 DOI: https://doi.org/10.3390/en15134542

How to Cite

APA

Niño-Callejas, S. D., Palombi-Gómez, J. C. and Montoya-Giraldo, O. D. (2024). Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors. Ingeniería e Investigación, 44(2), e110310. https://doi.org/10.15446/ing.investig.110310

ACM

[1]
Niño-Callejas, S.D., Palombi-Gómez, J.C. and Montoya-Giraldo, O.D. 2024. Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors. Ingeniería e Investigación. 44, 2 (Feb. 2024), e110310. DOI:https://doi.org/10.15446/ing.investig.110310.

ACS

(1)
Niño-Callejas, S. D.; Palombi-Gómez, J. C.; Montoya-Giraldo, O. D. Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors. Ing. Inv. 2024, 44, e110310.

ABNT

NIÑO-CALLEJAS, S. D.; PALOMBI-GÓMEZ, J. C.; MONTOYA-GIRALDO, O. D. Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors. Ingeniería e Investigación, [S. l.], v. 44, n. 2, p. e110310, 2024. DOI: 10.15446/ing.investig.110310. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/110310. Acesso em: 3 feb. 2025.

Chicago

Niño-Callejas, Santos Daniel, Juan Camilo Palombi-Gómez, and Oscar Danilo Montoya-Giraldo. 2024. “Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors”. Ingeniería E Investigación 44 (2):e110310. https://doi.org/10.15446/ing.investig.110310.

Harvard

Niño-Callejas, S. D., Palombi-Gómez, J. C. and Montoya-Giraldo, O. D. (2024) “Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors”, Ingeniería e Investigación, 44(2), p. e110310. doi: 10.15446/ing.investig.110310.

IEEE

[1]
S. D. Niño-Callejas, J. C. Palombi-Gómez, and O. D. Montoya-Giraldo, “Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors”, Ing. Inv., vol. 44, no. 2, p. e110310, Feb. 2024.

MLA

Niño-Callejas, S. D., J. C. Palombi-Gómez, and O. D. Montoya-Giraldo. “Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors”. Ingeniería e Investigación, vol. 44, no. 2, Feb. 2024, p. e110310, doi:10.15446/ing.investig.110310.

Turabian

Niño-Callejas, Santos Daniel, Juan Camilo Palombi-Gómez, and Oscar Danilo Montoya-Giraldo. “Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors”. Ingeniería e Investigación 44, no. 2 (February 20, 2024): e110310. Accessed February 3, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/110310.

Vancouver

1.
Niño-Callejas SD, Palombi-Gómez JC, Montoya-Giraldo OD. Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors. Ing. Inv. [Internet]. 2024 Feb. 20 [cited 2025 Feb. 3];44(2):e110310. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/110310

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 1
  • Mentions
  • News: 1

Article abstract page views

294

Downloads