Published
Moringa oleifera Seed Powder as a Natural Coagulant for Produced Water Treatment: Performance Optimization and Evaluation under Dynamic Oil Field Conditions
Polvo de semillas de Moringa oleifera como coagulante natural para el tratamiento de agua de producción: optimización del rendimiento y evaluación bajo condiciones dinámicas de campo petrolero
DOI:
https://doi.org/10.15446/ing.investig.118453Keywords:
produced water, coagulation-flocculation, Moringa oleifera, enhanced oil recovery, water chemistry, sustainable treatment (en)agua de producción, coagulación-floculación, Moringa oleifera, extracción mejorada de petróleo, química del agua, tratamiento sostenible (es)
Downloads
Managing produced water generated from crude oil and natural gas extraction is crucial in mitigating pollution, environmental, and operational risks. Traditional coagulants like aluminum sulfate and iron sulfate effectively treat produced water but pose environmental and health concerns. This study presents a comprehensive evaluation of Moringa oleifera seed coagulation using real produced water from an operating oil field, addressing critical gaps in previous research that relied solely on synthetic water mixtures. The produced water samples were collected from an on-shore oil field in Colombia and treated with a Moringa oleifera coagulant solution, using jar test experiments to evaluate removal efficiency regarding total suspended solids (TSS), oil and greases, and turbidity. The results indicate that the Moringa oleifera coagulant effectively reduces oil and greases, achieving a 81.3% removal efficiency at a concentration of 4.0 g/L. The removal efficiency values for TSS and turbidity were moderate: 33.8 and 40.8%, respectively. The optimal coagulant concentration was 4.0 g/L, beyond which the removal efficiency decreased. A water chemistry analysis showed minimal cation and anion variations, maintaining injection compatibility for enhanced oil recovery applications. Variations in well conditions were also assessed, showing that the coagulant’s performance was better under stable conditions but faced reduced efficiency in the face of increased contaminant levels. Specifically, TSS removal improved slightly under high-load conditions, while the oil and greases removal efficiency decreased significantly under dynamic field conditions. This study concludes that Moringa oleifera is a promising sustainable alternative to conventional coagulants for produced water treatment from oil reservoirs, offering environmental benefits and a potential for large-scale industrial applications, although further assessment is required to confirm economic feasibility.
La gestión del agua de producción generada durante la extracción de petróleo crudo y gas natural es fundamental para mitigar la contaminación y los riesgos ambientales y operativos. Los coagulantes tradicionales, como el sulfato de aluminio y el sulfato de hierro, tratan eficazmente el agua de producción, pero representan preocupaciones ambientales y de salud. Este estudio presenta una evaluación integral de la coagulación con semillas de Moringa oleifera utilizando agua de producción real de un campo petrolero en operación, abordando vacíos críticos en investigaciones previas, las cuales se basaban únicamente en mezclas sintéticas de agua. Las muestras de agua de producción fueron recolectadas de un campo petrolero terrestre en Colombia, y fueron tratadas con una solución coagulante de Moringa oleifera, empleando pruebas de jarras para evaluar la eficiencia de remoción de sólidos suspendidos totales (TSS), aceites y grasas, y turbidez. Los resultados indican que el coagulante de Moringa oleifera reduce eficazmente los aceites y grasas, logrando una eficiencia de remoción del 81.3 % a una concentración de 4.0 g/L. Los valores de eficiencia de remoción para TSS y turbidez fueron moderados: 33.8 y 40.8 % respectivamente. La concentración óptima del coagulante fue de 4.0 g/L, por encima de la cual la eficiencia de remoción disminuyó. Un análisis de la química del agua indicó variaciones mínimas en cationes y aniones, manteniendo la compatibilidad para inyección en aplicaciones de recobro mejorado de petróleo. También se evaluaron variaciones en las condiciones del pozo, mostrando que el desempeño del coagulante fue mejor bajo condiciones estables, pero presentó una eficiencia reducida frente a incrementos en los niveles de contaminantes. En particular, la remoción de TSS mejoró ligeramente bajo condiciones de alta carga, mientras que la eficiencia de remoción de aceites y grasas disminuyó significativamente en condiciones de campo dinámicas. Este estudio concluye que Moringa oleifera es una alternativa sostenible y prometedora a los coagulantes convencionales para el tratamiento de agua de producción proveniente de yacimientos petroleros, ya que ofrece beneficios ambientales y un potencial para aplicaciones industriales a gran escala, aunque se requiere una evaluación adicional para confirmar su viabilidad económica.
References
[1] IEA, “Global water consumption in the energy sector by fuel and power generation type in the Net Zero Scenar-io, 2021 and 2030.” Accessed: Dec. 16, 2023. [Online]. Available: https://www.iea.org/data-and-statistics/charts/global-water-consumption-in-the-energy-sector-by-fuel-and-power-generation-type-in-the-net-zero-scenario-2021-and-2030
[2] IPIECA, “Efficiency in water use. Guidance document for the upstream onshore oil and gas industry,” Lon-don, Oct. 2014. Accessed: Dec. 17, 2023. [Online]. Available: https://www.ipieca.org/resources/efficiency-in-water-use-guidance-document-for-the-upstream-onshore-oil-and-gas-industry
[3] C. M. Cooper et al., “Oil and gas produced water reuse: Opportunities, treatment needs, and challenges,” ACS ES&T Engineering, vol. 2, no. 3, pp. 347–366, Mar. 2022. https://doi.org/10.1021/acsestengg.1c00248
[4] IPIECA, “Reuse of produced water from the onshore oil and gas industry,” Mar. 2020. Accessed: Dec. 26, 2023. [Online]. Available: https://www.ipieca.org/resources/reuse-of-produced-water-from-the-onshore-oil-and-gas-industry
[5] A. Fakhru’l-Razi, A. Pendashteh, L. C. Abdullah, D. R. A. Biak, S. S. Madaeni, and Z. Z. Abidin, “Review of tech-nologies for oil and gas produced water treatment,” J. Hazard. Mater., vol. 170, no. 2, pp. 530–551, 2009. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.05.044
[6] F. Al-Ajmi, M. Al-Marri, F. Almomani, and A. AlNouss, “A comprehensive review of advanced treatment tech-nologies for the enhanced reuse of produced water,” Water (Basel), vol. 16, no. 22, art. 3306, 2024. https://doi.org/10.3390/w16223306
[7] K. T. Amakiri, A. R. Canon, M. Molinari, and A. Angelis-Dimakis, “Review of oilfield produced water treatment technologies,” Chemosphere, vol. 298, art. 134064, 2022. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.134064
[8] M. Ibrahim, M. H. Nawaz, P. R. Rout, J.-W. Lim, B. Mainali, and M. K. Shahid, “Advances in produced water treatment technologies: An in-depth exploration with an emphasis on membrane-based systems and future perspectives,” Water, vol. 15, no. 16, art. 2890 2023. https://doi.org/10.3390/w15162980
[9] M. A. Al-Ghouti, M. A. Al-Kaabi, M. Y. Ashfaq, and D. A. Da’na, “Produced water characteristics, treatment and reuse: A review,” J. Water Process Eng., vol. 28, pp. 222–239, 2019. https://doi.org/https://doi.org/10.1016/j.jwpe.2019.02.001
[10] J. Duan and J. Gregory, “Coagulation by hydrolysing metal salts,” Adv. Colloid Interface Sci, vol. 100–102, pp. 475–502, 2003. https://doi.org/10.1016/S0001-8686(02)00067-2
[11] J. Gregory and J. Duan, “Hydrolyzing metal salts as coagulants,” Pure App. Chem. vol. 73, no. 12, pp. 2017–2026, 2001. https://doi.org/10.1351/pac200173122017
[12] A. Pacala, I. Vlaicu, and C. Radovan, “Application of several aluminium prehydrolysed coagulants in surface water treatment for potabilization,” Environ. Eng. Manag. J., vol. 8, pp. 1371–1376, 2009. https://doi.org/10.30638/eemj.2009.200
[13] A. H. Jagaba, S. Abubakar, I. M. Lawal, A. A. A. Latiff, and I. Umaru, “Wastewater treatment using alum, the com-binations of alum-ferric chloride, alum-chitosan, alum-zeolite and alum- Moringa oleifera as adsorbent and co-agulant,” Int. J. Eng. Manage., vol. 2, no. 3, pp. 67–75, Dec. 2018. https://doi.org/10.11648/j.ijem.20180203.13
[14] M. Saleem and R. T. Bachmann, “A contemporary re-view on plant-based coagulants for applications in water treatment,” J. Ind. Eng. Chem., vol. 72, pp. 281–297, 2019. https://doi.org/10.1016/j.jiec.2018.12.029
[15] A. Ibrahim, A. Z. Yaser, and J. Lamaming, “Synthesising tannin-based coagulants for water and wastewater ap-plication: A review,” J. Environ. Chem. Eng., vol. 9, no. 1, art. 105007, 2021. https://doi.org/10.1016/j.jece.2020.105007
[16] A. Patchaiyappan and S. P. Devipriya, “Chapter 5 - Ap-plication of plant-based natural coagulants in water treatment,” in Cost Effective Technologies for Solid Waste and Wastewater Treatment, S. Kathi, S. Devipriya, and K. Thamaraiselvi, Eds. Amsterdam, Netherlands: Elsevier, 2022, pp. 51–58. https://doi.org/10.1016/B978-0-12-822933-0.00012-7
[17] A. Benalia, K. Derbal, Z. Amrouci, O. Baatache, A. Khalfaoui, and A. Pizzi, “Application of Plant-Based Co-agulants and Their Mechanisms in Water Treatment: A Review,” J. Renew. Mater., vol. 12, no. 4, pp. 667–698, 2024. https://doi.org/10.32604/jrm.2024.048306
[18] S. Maurya and A. Daverey, “Evaluation of plant-based natural coagulants for municipal wastewater treatment,” 3 Biotech., vol. 8, no. 1, p. 77, 2018. https://doi.org/10.1007/s13205-018-1103-8
[19] A. Ndabigengesere and K. S. Narasiah, “Use of Moringa oleifera seeds as a primary coagulant in wastewater treatment,” Environ. Tech., vol. 19, no. 8, pp. 789–800, Aug. 1998. https://doi.org/10.1080/09593331908616735
[20] Hendrawati, I. R. Yuliastri, Nurhasni, E. Rohaeti, H. Effendi, and L. K. Darusman, “The use of Moringa oleif-era seed powder as coagulant to improve the quality of wastewater and ground water,” IOP Conf. Ser. Earth. En-viron. Sci., vol. 31, no. 1, p. 012033, 2016. https://doi.org/10.1088/1755-1315/31/1/012033
[21] V. Agarwal, D. Dixit, and M. J. Bhatt, “Use of Moringa oleifera seeds as a primary coagulant in textile wastewater treatment,” in Waste Management and Re-source Efficiency, S. K. Ghosh, Ed. Singapore: Springer Singapore, 2019, pp. 1231–1236. https://doi.org/10.1007/978-981-10-7290-1_102
[22] W. M. Desta and M. E. Bote, “Wastewater treatment using a natural coagulant (Moringa oleifera seeds): op-timization through response surface methodology,” Heliyon, vol. 7, no. 11, Nov. 2021. https://doi.org/10.1016/j.heliyon.2021.e08451
[23] T. C. Shan, M. Al Matar, E. A. Makky, and E. N. Ali, “The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal,” App. Water Sci., vol. 7, no. 3, pp. 1369–1376, 2017. https://doi.org/10.1007/s13201-016-0499-8
[24] C. Santana, D. Pereira, S. Sousa, E. Cavalcanti, and G. Silva, “Evaluation of the process of coagula-tion/flocculation of produced water using Moringa oleifera Lam. As natural coagulant,” Braz. J. Petrol. Gas, vol. 4, Sep. 2010. https://doi.org/10.5419/bjpg.v4i3.115
[25] N. Marzougui et al., “Efficiency of different Moringa oleif-era (Lam.) Varieties as natural coagulants for urban wastewater treatment,” Sustainability, vol. 13, no. 23, art. 13500, 2021. https://doi.org/10.3390/su132313500
[26] J. S. Alakali, C. T. Kucha, and I. A. Rabiu, “Effect of dry-ing temperature on the nutritional quality of Moringa oleifera leaves,” African J. Food. Sci., vol. 9, no. 7, pp. 395–399, 2015. https://doi.org/10.5897/AJFS2014.1145
[27] O. A. Fakayode and E. A. Ajav, “Process optimization of mechanical oil expression from Moringa (Moringa oleif-era) seeds,” Ind. Crops Prod., vol. 90, pp. 142–151, 2016. https://doi.org/10.1016/j.indcrop.2016.06.017
[28] H. Bhuptawat, G. K. Folkard, and S. Chaudhari, “Innova-tive physico-chemical treatment of wastewater incor-porating Moringa oleifera seed coagulant,” J. Hazard. Mater., vol. 142, no. 1, pp. 477–482, 2007. https://doi.org/https://doi.org/10.1016/j.jhazmat.2006.08.044
[29] Method 1664, revision B: n-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane Ex-tractable Material (SGT-HEM; Non-polar Material) by Ex-traction and Gravimetry - EPA-821-R-10-001, US Environ-mental Protection Agency, Feb. 2010.
[30] Method 2320 (Alkalinity) in Standard Methods for the Exam-ination of Water and Wastewater” APHA, 1998.
[31] Calcium hardness, Titration method with EDTA, Method 8204, HACH, 2021. [Online]. Available: https://www.hach.com/assetsref/56138
[32] S. K. Singh, R. Bharose, J. Nemčić-Jurec, K. S. Rawat, and D. Singh, “Chapter 7 - Irrigation water quality ap-praisal using statistical methods and WATEQ4F geo-chemical model,” in Agricultural Water Management, P. K. Srivastava, M. Gupta, G. Tsakiris, and N. W. Quinn, Eds. Cambridge, MA, USA: Academic Press, 2021, pp. 101–138. https://doi.org/10.1016/B978-0-12-812362-1.00007-2
[33] HACH, “Water analysis handbook,” 2019. [Online]. Available: https://www.hach.com/resources/water-analysis-handbook
[34] A. T. A. Baptista, M. O. Silva, R. G. Gomes, R. Berga-masco, M. F. Vieira, and A. M. S. Vieira, “Protein frac-tionation of seeds of Moringa oleifera Lam. and its appli-cation in superficial water treatment,” Sep. Purif. Tech., vol. 180, pp. 114–124, 2017. https://doi.org/10.1016/j.seppur.2017.02.040
[35] G. Folkard and J. Sutherland, “Development of a natu-rally derived coagulant for water and wastewater treatment,” Water Supply, vol. 2, no. 5–6, pp. 89–94, Dec. 2002. https://doi.org/10.2166/ws.2002.0155
[36] M. A. Al-Ghouti, M. A. Al-Kaabi, M. Y. Ashfaq, and D. A. Da’na, “Produced water characteristics, treatment and reuse: A review,” J. Water Process Eng., vol. 28, pp. 222–239, 2019. https://doi.org/10.1016/j.jwpe.2019.02.001
[37] A. Ahmed and K. Mohammed, “Optimisation of Moringa oleifera pod extract concentration for Surface water clarification,” Bayero J. Pure App. Sci., 2019. https://doi.org/10.4314/bajopas.v11i1.63S
[38] J. J. F. Díaz, S. Roa, and A. M. E. Tordecilla, “Efficiency of Moringa oleifera seed as a natural coagulant to remove turbidity from Sinú river’s water,” 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:129105359
[39] B. A. P. Serasinghe, N. S. Abeysingha, D. M. S. H. Dis-sanyake, and N. V. H. S. K. Vithanage, “Effectiveness of locally available plant materials in the dry zone of Sri Lanka as natural coagulants in treating turbid water,” J. Agric. Sci. Sri Lanka, vol 17, no. 1, art/ 9617, 2022. https://doi.org/10.4038/jas.v17i1.9617
[40] A. Sambor and Z. Ferenc, “The influence of hydraulic conditions on coagulation process effectiveness,” 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:117296632
[41] S. Bhatkar, Y. Chavan, V. Wadgaonkar, and L. Kshir-sagar, “Dose optimization of oil field produced water and advanced water treatment for heavy viscous oil,” Mater. Today Proc., vol. 77, pp. 376–381, 2023. https://doi.org/10.1016/j.matpr.2023.01.025
[42] R. Kumar Kaushal and H. Goyal, “Treatment of waste water using natural coagulants,” Proc. Recent Adv. Inter-disc. Trends Eng. App. (RAITEA), 2019. https://doi.org/10.2139/ssrn.3368088
[43] W. and S. A. Eri Iva Rustanti and Hadi, “Clarification of Pharmaceutical Wastewater with Moringa Oleifera: Op-timization Through Response Surface Methodology,” Journal of Ecological Engineering, vol. 19, no. 3, pp. 126–134, 2018. https://doi.org/10.12911/22998993/86148
[44] G. G. Chales, B. S. Tihameri, N. V. M. Milhan, C. Y. Koga-Ito, M. L. P. Antunes, and A. G. dos Reis, “Impact of Moringa oleifera seed-derived coagulants processing steps on physicochemical, residual organic, and cytotox-icity properties of treated water,” Water, vol. 14, no. 13, art. 2058, 2022. https://doi.org/10.3390/w14132058
[45] K. T. Amakiri, A. R. Canon, M. Molinari, and A. Angelis-Dimakis, “Review of oilfield produced water treatment technologies,” Chemosphere, vol. 298, art. 134064, 2022. https://doi.org/10.1016/j.chemosphere.2022.134064
[46] J. Neff, K. Lee, and E. M. DeBlois, “Produced Wa-ter: Overview of Composition, Fates, and Effects,” in Produced Water: Environmental Risks and Advances in Miti-gation Technologies, K. Lee and J. Neff, Eds. New York, NY, USA: Springer New York, 2011, pp. 3–54. https://doi.org/10.1007/978-1-4614-0046-2_1
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Juan Camilo Tovar Casanova, Omex Mohan, Olugbenga Abiola Fakayode

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.










