Published

2007-01-01

Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity

Desarrollo de un modelo de redes neuronales artificiales para predecir la resistencia a la compresión y la resistividad eléctrica del concreto

DOI:

https://doi.org/10.15446/ing.investig.v27n1.14771

Keywords:

neural network, concrete strength, concrete resistivity, concrete ultrasonic pulse velocity (en)
redes neuronales, resistencia a la compresión del concreto, resistividad del concreto, velocidad de pulso en el concreto (es)

Authors

  • Juan Manuel Lizarazo Marriaga Universidad Nacional de Colombia
  • José Gabriel Gómez Cortés Universidad Nacional de Colombia

The present study was conducted for predicting the compressive strength of concrete based on unit weight ultrasonic and pulse velocity (UPV) for 41 different concrete mixtures. This research emerged from the need for a rapid test for predicting concrete’s compressive strength. The research was also conducted for predicting concrete’s electrical resistivity based on unit weight ultrasonic, pulse velocity (UPV) and compressive strength with the same mixes. The prediction was made using simple regression analysis and artificial neural networks. The results revealed that artificial neural networks can be used for effectively predicting compressive strength and electrical resistivity.

En esta investigación se busca obtener un método para predecir la resistencia a la compresión mediante el peso unitario y la velocidad de pulso ultrasónico usando 41 mezclas de concreto diferentes. El estudio ha sido por la necesidad de obtener un método rápido para predecir la resistencia a la compresión del concreto. De la misma manera, la investigación también busca predecir la resistividad eléctrica del concreto mediante el peso unitario, la velocidad de pulso ultrasónico y la resistencia a la compresión. El modelo para predecir se realizó utilizando una regresión simple y un modelo de redes neuronales. Los resultados mostraron que los modelos de redes neuronales para predecir la resistencia a la compresión y la resistividad eléctrica del concreto funcionan adecuadamente.

References

ASTM C 597., Standard Test Method for Pulse Velocity Through Concrete., Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, Vol. 4.02.

Demuth, H., Beale, M. and Hagan, M., Neural Network Toolbox., For Use with MATLAB®, 2006.

Graham, L. D. Forbes, D. R. and Smith, S., Modeling the ready mixed concrete delivery system with neural networks., Automation in Construction, Vol. 15, No. 5, 2006, pp. 656-663. DOI: https://doi.org/10.1016/j.autcon.2005.08.003

Hilera, J. R, y Martínez, V. J., Redes neuronales Artificiales: Fundamentos, Modelos y Aplicaciones., Castilla Editores, 1997.

Mindess, F. Y. and Darwin, C., Second Edition, Prentice Hall, 2003.

Obert, L., Measurement of pressures on rock pillars in underground mines., R.I. 3521, U.S., Bureau of Mines, 1940.

Portland Cement Association., Electrical Resistivity of Concrete - A Literature Review., PCA R&D, Serial No 2457, 2003.

Ramachandran, V. S. and Beaudoin, J. J., Handbook of analytical techniques in concrete science and technology - principles, techniques, and applications., Edited by Institute for Research in Construction National Research Council, Ottawa, Canada, 1999.

How to Cite

APA

Lizarazo Marriaga, J. M. and Gómez Cortés, J. G. (2007). Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity. Ingeniería e Investigación, 27(1), 11–18. https://doi.org/10.15446/ing.investig.v27n1.14771

ACM

[1]
Lizarazo Marriaga, J.M. and Gómez Cortés, J.G. 2007. Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity. Ingeniería e Investigación. 27, 1 (Jan. 2007), 11–18. DOI:https://doi.org/10.15446/ing.investig.v27n1.14771.

ACS

(1)
Lizarazo Marriaga, J. M.; Gómez Cortés, J. G. Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity. Ing. Inv. 2007, 27, 11-18.

ABNT

LIZARAZO MARRIAGA, J. M.; GÓMEZ CORTÉS, J. G. Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity. Ingeniería e Investigación, [S. l.], v. 27, n. 1, p. 11–18, 2007. DOI: 10.15446/ing.investig.v27n1.14771. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14771. Acesso em: 27 nov. 2024.

Chicago

Lizarazo Marriaga, Juan Manuel, and José Gabriel Gómez Cortés. 2007. “Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity”. Ingeniería E Investigación 27 (1):11-18. https://doi.org/10.15446/ing.investig.v27n1.14771.

Harvard

Lizarazo Marriaga, J. M. and Gómez Cortés, J. G. (2007) “Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity”, Ingeniería e Investigación, 27(1), pp. 11–18. doi: 10.15446/ing.investig.v27n1.14771.

IEEE

[1]
J. M. Lizarazo Marriaga and J. G. Gómez Cortés, “Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity”, Ing. Inv., vol. 27, no. 1, pp. 11–18, Jan. 2007.

MLA

Lizarazo Marriaga, J. M., and J. G. Gómez Cortés. “Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity”. Ingeniería e Investigación, vol. 27, no. 1, Jan. 2007, pp. 11-18, doi:10.15446/ing.investig.v27n1.14771.

Turabian

Lizarazo Marriaga, Juan Manuel, and José Gabriel Gómez Cortés. “Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity”. Ingeniería e Investigación 27, no. 1 (January 1, 2007): 11–18. Accessed November 27, 2024. https://revistas.unal.edu.co/index.php/ingeinv/article/view/14771.

Vancouver

1.
Lizarazo Marriaga JM, Gómez Cortés JG. Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity. Ing. Inv. [Internet]. 2007 Jan. 1 [cited 2024 Nov. 27];27(1):11-8. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14771

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

441

Downloads

Download data is not yet available.