Published

2008-09-01

Determining electrical loss in electromagnetically-modelled induction motors using the finite element method

Determinación de pérdidas eléctricas en motores de inducción modelados electromagnéticamente con el método de los elementos finitos

DOI:

https://doi.org/10.15446/ing.investig.v28n3.15122

Keywords:

induction motor, unbalance, electrical loss, finite element method (en)
motor de inducción, desbalance, pérdidas eléctricas, método de elementos finitos (es)

Authors

  • Camilo Andrés Cortés Universidad Nacional de Colombia
  • Wim Deprez Katholieke Universiteit Leuven
  • Johan Driesen Katholieke Universiteit Leuven
  • Jhon J. Pérez Universidad de La Salle

This paper shows the pattern of a 7.5 kW squirrel-cage induction motor’s electrical loss in balanced and unbalanced conditions, modelling the motor using the finite element method and comparing the results with experimental data obtained in the laboratory for the selected motor. Magnetic flux density variation was analysed at four places in the machine. The results so obtained showed that the undervoltage unbalanced condition was the most critical from the motor’s total loss point of view. Regarding variation of loss in parts of the motor, a constant iron loss pattern was found when the load was changed for each type of voltage supply and that the place where the loss had the largest rise was in the machine’s rotor.

Este artículo presenta el comportamiento de las pérdidas eléctricas en un motor de inducción de jaula de ardilla de 7,5 kW de potencia operando con alimentación balanceada y desbalanceada, modelando al motor con el método de los elementos finitos y comparando los resultados con pruebas en laboratorio del motor seleccionado. Se analiza la variación de la densidad de flujo magnético en cuatro lugares de la máquina en diversas situaciones de carga y desbalance. Los resultados obtenidos muestran que, desde el punto de vista de las pérdidas totales del motor, la operación desbalanceada con subvoltajes es la situación más crítica para la máquina. En cuanto a la variación de las pérdidas en las partes del motor, se encontró que las pérdidas en el hierro tienen un comportamiento constante al variar la carga para cada tipo de alimentación, y en el lugar que las pérdidas presentan mayor aumento es en el rotor de la máquina.

References

Belmans, R., Collard, B., Driesen, J., Evans, M-A, Honorio, L., Electricity for more efficiency: Electric technologies and their energy savings potential., Eurelectric & UIE: Brussels, 2004, pp. 121.

Belmans, R., Deprez, W., Gol, O., Increasing induction motor drives efficiency: understanding the pitfalls., Proceedings of Electrotechnical Institute, Vol. 223. 2005, pp. 7-25.

Bertoldi, P., Atanasio, B., Electricity Consumption and Efficiency Trends in the Enlarged European Union - Status report 2006., I.f.E.a. Sustainability, European Comission: Luxembourg, 2007, pp. 66.

Bianchi, N., Electrical machine analysis using finite elements., Boca Ratón: CRC Press, Taylor & Francis Group, 2005, pp. 275.

Boldea, I., Nasar, S., Induction Machines Handbook., Boca Ratón: CRC Press, 2001, pp. 950

Chevalier, T., Kedous-Labouc, A., Cornut, B., Cester, C., Estimation of magnetic loss in an induction motor fed with sinusoidal supply using a finite element software and a new approach to dynamic hysteresis., IEEE Transactions on Magnetics, Vol. 35 No. 5, 1999, pp. 3. DOI: https://doi.org/10.1109/20.800537

De Keulenaer, H., Panorama of EU-25 electricity use., 2007 [cited 2007 2007/07/02]; Available from: http://www.leonardoenergy.org/drupal/node/1991.

Dems, M., Komeza, K., Wiak, S., Computation of rotor windings power losses in squirrel-cage induction motor., Complel – The international journal for computation and mathematics in electrical and electronic engineering, Vol. 14, No. 4, 1995, pp. 4. DOI: https://doi.org/10.1108/eb051920

Deprez, W., Dexters, A., Bastiaensen, C., Parasiliti, F., Belmans, R., Induction machine efficiency in motor and generator mode., EEMODS '07 Energy Efficiency in Motor Driven Systems, Beijing, 2007, pp. 9.

Deprez, W., Dexters, A., Stevens, S., Parasiliti, F., Belmans, R., The combined effect of practical operating conditions and material choice on the performance of induction machines., EEMODS '07 Energy Efficiency in Motor Driven Systems, Beijing, 2007, pp. 12.

Dexters, A., Deprez, W., Belmans, R., The effect of practical operation conditions on the performance of induction machines., 19th International Conference on Electricity Distribution – CIRED, Vienna, 2007, pp. 4.

Driesen, J., Coupled electromagnetic-thermal problems in electrical energy transducers., ESAT. PhD. Leuven: Katholieke Universiteit Leuven, 2000.

Eguiluz, L., Lara, P., Lavandero, J., Mañana, M., Performance Analysis of a three-phase induction motor under non-sinusoidal and unbalanced conditions., IEEE International Symposium on Diagnostic for electrical machines, power electronics and drives. Gijón, España, 1999, pp. 5.

Faiz, J., Ebrahimpour, H., Pillay, P., Influence of unbalanced voltage on steady-state performance of a three-phase squirrel-cage induction motor., IEEE Transactions on Energy Conversion, Vol. 19, No. 4, 2004, pp. 6. DOI: https://doi.org/10.1109/TEC.2004.837283

Faiz, J., Ebrahimpour, H., Pillay, P., Influence of unbalanced voltage supply on efficiency of three phase squirrel cage induction motor and economic analysis., Energy Conversion and Management, Vol. 47, No. 3, 2006, pp. 14. DOI: https://doi.org/10.1016/j.enconman.2005.04.009

Fernandez, X., Coimbra, A., Pinto, J., Antunes, C., Donsion, M., Thermal analysis of an induction motor fed by unbalanced power supply using a combined finite element-symmetrical components formulation., Proceedings International Conference on Power System Technology, Beiji, IEEE, 1998, pp. 260-264.

Hameyer, K., Belmans, R., Numerical modeling and design of electrical machines and devices., Southampton: Computational mechanics publications, 1998, pp. 305.

Hameyer, K., Mertens, R., Pahner, U., Belmans, R., New technique to enhance the accuracy of 2-D/3-D field quantities and forces obtained by standard finite-element solutions., IEE Proceedings Sci. Meas. Technol., Vol. 145, No. 2, 1998, pp. 9. DOI: https://doi.org/10.1049/ip-smt:19981469

Jiang, F., Bo, Z., Li, R., Performance of Induction Generator in Parallel with an Unbalanced Three-Phase System., Fourth International Conference on Advances in Power System Control, Operation and Management,

Hong Kong, 1998. pp. 1193-1197.

Kersting, W., Causes and effects of unbalanced voltages serving an induction motor., IEEE Transactions on Industry Applications Vol. 37, No. 1, 2001, pp. 6. DOI: https://doi.org/10.1109/28.903142

Lee, C., Chen, B., Lee, W., Hsu, Y., Effects of various unbalanced voltages on the operation performance of an induction motor under the same voltage unbalance factor condition., Electric Power Systems Research, Vol. 47 No. 3, 1998, pp. 11. DOI: https://doi.org/10.1016/S0378-7796(98)00035-2

Litman, T., Efficient Electric motor systems Handbook., Oklahoma: The Fairmont Press Inc., 1995, pp. 320.

Mantilla, L., An analytical and graphical study of the symmetrical components in an induction motor supply in relation to the voltage unbalance parameters., Electrical Engineering, Vol. 89 No. 7, 2007, pp. 11. DOI: https://doi.org/10.1007/s00202-006-0038-y

Mertens, E., Motors and Variable Speed Drives, in Power Quality & Utilization Guide., Section 7:

Energy Efficiency, L. Energy Editor, 2007, Leonardo Energy. pp. 11.

Muravlev, O., Muravleva, O., Vekhter, E., Energetic parameters of induction motors as the basis of energy saving in a variable speed., Electrical Power Quality and Utilisation Journal, Vol. 11, No. 2, 2005, pp. 8.

Pillay, P., Hofmann, P., Manyage, M., Derating of induction motors operating with a combination of unbalanced voltages and over or undervoltages., IEEE Transaction on Energy Conversion, Vol. 17, No. 4, 2002, pp. 7. DOI: https://doi.org/10.1109/TEC.2002.805228

Sadiku, M. N., Numerical techniques in Electromagnetics., 2nd ed. Boca Ratón: CRC, 2000, pp. 760. DOI: https://doi.org/10.1201/9781420058277

Slaets, B., Van Roy, P., Belmans, R., Energy efficiency of induction machines. International Conference on Electrical Machines-ICEM Finland, 2000, pp. 1503-1506.

Wallace, A., von Jouanne, A., Andrews, P., Wohlgemuth, C., Wainwright, G., The effects of voltage and winding abnormalities on the measured performance of induction motors., IEEE Annual Meeting Industry Applications Conference, New Orleans, IEEE, 1997, pp. 196 - 200

Wang, Y., Analysis of effects of three-phase voltage unbalance on induction motors with emphasis on the angle of the complex voltage unbalance factor., IEEE Transaction on Energy Conversion, Vol. 16, No. 3, 2001, pp. 270 – 275. DOI: https://doi.org/10.1109/60.937207

Yamazaki, K., Efficiency analysis of induction motors for ammonia compressors considering stray load losses caused by stator and rotor slot ripple., IEEE Thirty-Sixth IAS Annual Meeting Industry Applications Conference, Chicago, IEEE, 2001, pp. 762 – 769.

Yamazaki, K., Haruishi, Y., Stray load loss analysis of induction motor comparison of measurement due to IEEE standard 112 and direct calculation by finite element method., IEEE Transactions on Industry Applications, Vol. 40, No. 2, 2004, pp. 543-549 DOI: https://doi.org/10.1109/TIA.2004.824509

Yamazaki, K., Shinfuku, S., Combined 3-D-2-D finite element analysis of induction motors considering variation of neutral point potential in star connection., IEEE Transactions on Magnetics, Vol. 37 No. 5, 2001, pp. 3706–3710. DOI: https://doi.org/10.1109/20.952695

How to Cite

APA

Cortés, C. A., Deprez, W., Driesen, J. and Pérez, J. J. (2008). Determining electrical loss in electromagnetically-modelled induction motors using the finite element method. Ingeniería e Investigación, 28(3), 64–74. https://doi.org/10.15446/ing.investig.v28n3.15122

ACM

[1]
Cortés, C.A., Deprez, W., Driesen, J. and Pérez, J.J. 2008. Determining electrical loss in electromagnetically-modelled induction motors using the finite element method. Ingeniería e Investigación. 28, 3 (Sep. 2008), 64–74. DOI:https://doi.org/10.15446/ing.investig.v28n3.15122.

ACS

(1)
Cortés, C. A.; Deprez, W.; Driesen, J.; Pérez, J. J. Determining electrical loss in electromagnetically-modelled induction motors using the finite element method. Ing. Inv. 2008, 28, 64-74.

ABNT

CORTÉS, C. A.; DEPREZ, W.; DRIESEN, J.; PÉREZ, J. J. Determining electrical loss in electromagnetically-modelled induction motors using the finite element method. Ingeniería e Investigación, [S. l.], v. 28, n. 3, p. 64–74, 2008. DOI: 10.15446/ing.investig.v28n3.15122. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/15122. Acesso em: 7 mar. 2025.

Chicago

Cortés, Camilo Andrés, Wim Deprez, Johan Driesen, and Jhon J. Pérez. 2008. “Determining electrical loss in electromagnetically-modelled induction motors using the finite element method”. Ingeniería E Investigación 28 (3):64-74. https://doi.org/10.15446/ing.investig.v28n3.15122.

Harvard

Cortés, C. A., Deprez, W., Driesen, J. and Pérez, J. J. (2008) “Determining electrical loss in electromagnetically-modelled induction motors using the finite element method”, Ingeniería e Investigación, 28(3), pp. 64–74. doi: 10.15446/ing.investig.v28n3.15122.

IEEE

[1]
C. A. Cortés, W. Deprez, J. Driesen, and J. J. Pérez, “Determining electrical loss in electromagnetically-modelled induction motors using the finite element method”, Ing. Inv., vol. 28, no. 3, pp. 64–74, Sep. 2008.

MLA

Cortés, C. A., W. Deprez, J. Driesen, and J. J. Pérez. “Determining electrical loss in electromagnetically-modelled induction motors using the finite element method”. Ingeniería e Investigación, vol. 28, no. 3, Sept. 2008, pp. 64-74, doi:10.15446/ing.investig.v28n3.15122.

Turabian

Cortés, Camilo Andrés, Wim Deprez, Johan Driesen, and Jhon J. Pérez. “Determining electrical loss in electromagnetically-modelled induction motors using the finite element method”. Ingeniería e Investigación 28, no. 3 (September 1, 2008): 64–74. Accessed March 7, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/15122.

Vancouver

1.
Cortés CA, Deprez W, Driesen J, Pérez JJ. Determining electrical loss in electromagnetically-modelled induction motors using the finite element method. Ing. Inv. [Internet]. 2008 Sep. 1 [cited 2025 Mar. 7];28(3):64-7. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/15122

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Juan David Marín García, Juan David Marin Jimenez, Sandra Ximena Carvajal Quintero. (2021). Implementation of an Energy Management System in Colombian Manufacturing - A Methodological Approach. Transactions on Energy Systems and Engineering Applications, 2(2), p.9. https://doi.org/10.32397/tesea.vol2.n2.2.

Dimensions

PlumX

  • Citations
  • CrossRef - Citation Indexes: 1
  • Captures
  • Mendeley - Readers: 6

Article abstract page views

395

Downloads