Non-uniform electric field-induced yeast cell electrokinetic behavior
Comportamiento electrocinético de levaduras inducido por campos eléctricos no uniformes
DOI:
https://doi.org/10.15446/ing.investig.v28n3.15129Keywords:
dielectrophoresis, cell handling, biochip (en)dielectroforesis, manipulación de células, biochips (es)
Downloads
Common dielectrophoresis (c-DEP, i.e. neutral matter motion induced by non-uniform electric fields) has become a basic phenomenon of biochips intended for medical, biological and chemical assays, especially when they imply bioparticle handling. This paper deals with modelling and experimental verification of a castellated, c-DEP-based, microelectrode array intended to handle biological objects. The proposed microsystem was developed employing platinum electrodes patterned by lift-off, silicon micro machining and photoresin patterning techniques. Saccharomyces cerevisiae were used as test bioparticles for experimental verification. Yeast cells were repelled toward electrode bays and toward interelectrodic gaps tor frequencies around 20 MHz where there is minimum electric field strength, corresponding to a negative dielectrophoretic phenomenon. Yeast cell agglomerations were observed around electrode edges for frequencies of around 2 MHz where there is maximum electric field strength, thereby verifying the positive dielectrophoretic phenomenon. Bioparticles were separated from the electrode edges when the working frequency was reduced and they were dragged towards the electrode centre, remaining there while the frequency was low enough. Such atypical pattern may be explained due to the occurrence of positive dielectrophoresis overlap with electrohydrodynamic effects (i.e. the viscous drag force acting on the particles was greater than the dielectrophoretic force at frequencies where positive dielectrophoresis should occur). The experiments illustrated microsystem convenience in microhandling biological objects, the reby providing these microarrays’ possible use with other cells. Liquid motion resulting from electrohydrodynamic effects must also be taken into account when designing bioparticle micromanipulators, and could be used as a mechanism for cleaning electrode surfaces.
La dielectroforesis común (c-DEP), es decir, el movimiento de materia eléctricamente neutra inducido por campos eléctricos no uniformes, se ha convertido en un fenómeno fundamental dentro de los biochips dedicados a ensayos médicos, biológicos y químicos, especialmente cuando ellos implican la manipulación de biopartículas. El presente artículo describe el modelado y la verificación experimental de un arreglo de microelectrodos interdigitados, basado en c-DEP y destinado a manejar objetos biológicos. El microsistema propuesto se desarrolló empleando técnicas como lift-off para el grabado de electrodos de platino, micromecanizado de silicio y moldeado de resinas fotocurables. La verificación experimental se realizó utilizando Saccharomyces cerevisiae como biopartículas de prueba. Para frecuencias cercanas a 20 MHz se observó que las levaduras son repelidas hacia las bahías de los electrodos y hacia el espaciado interelectródico, donde el campo eléctrico es mínimo, lo cual corresponde al fenómeno de dielectroforesis negativa. Para frecuencias cercanas a 2 MHz se observó la aglomeración de levaduras en el borde de los electrodos, donde el campo eléctrico es máximo, verificando así el fenómeno de dielectroforesis positiva. Al reducir la frecuencia de operación, las biopartículas se desprenden del borde de los electrodos y son empujadas hacia el centro de los electrodos, permaneciendo allí mientras la frecuencia sea lo suficientemente baja. Este comportamiento atípico se puede explicar porque la dielectroforesis positiva se traslapa con los efectos electrohidrodinámicos, o sea que la fuerza de arrastre viscoso que actúa sobre las partículas es mayor que la fuerza dielectroforética, a frecuencias en donde la dielectroforesis positiva debería ocurrir. Los experimentos ilustran la conveniencia de los microsistemas como micromanipuladores de objetos biológicos, abriendo la posibilidad de utilizarlos con otro tipo de células. Adicionalmente, el movimiento del líquido, como resultado de efectos electrohidrodinámicos, debe ser tenido en cuenta cuando se diseñan micromanipuladores de biopartículas y podría ser utilizado como mecanismo para la limpieza de los electrodos.
References
Abidin, Z. Z., Dowes, L. and Markx, G. H., Novel electrode structures for large scale dielectrophoretic separations based on textile technology., Journal Biotechnology, Vol. 130, 2007, pp. 183- 187. DOI: https://doi.org/10.1016/j.jbiotec.2007.03.010
Dalton, C. and Kaler, K., An integrated PDMS microfluidic device for dielectrophoretic separation of malignant cells., Source: Proceedings of the 3rd International Conference on Microchannels and Minichannels, Vol. part B, 2005, pp. 411-418.
Fernández F.H. Design, assembly and testing of microsystems for dielectrophoresis-based bioparticle electrohandling, Doctoral thesis, Department of Electronics, University of Barcelona, Barcelona, Spain 2000.
Figeys, D. and Pinto, D. Lab-on-a-chip: A revolution in biological and medical sciences., Analytical Chemistry, Vol. 72, 2000, pp. 330a-335a. DOI: https://doi.org/10.1021/ac002800y
Fuhr, G. and Shirley, S. G., Biological application of microstructures., Topics in current chemistry, Vol.194, 1998, pp. 83-116. DOI: https://doi.org/10.1007/3-540-69544-3_4
Green, N. G. and Morgan, H., Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces., Journal of Physics D: Applied Physics, Vol. 31, 1998, pp. L25–L30. DOI: https://doi.org/10.1088/0022-3727/31/7/002
Green N. G., Ramos, A. and Morgan, H., AC electrokinetics: a survey of sub-micrometre particle dynamics., Journal of Physics D: Applied Physics, Vol. 33, 2000, pp. 632-641. DOI: https://doi.org/10.1088/0022-3727/33/6/308
Green N. G., Ramos, A. and González, A., Electric field induced fluid flow motion on microelectrodes; the effect of illumination., Journal of Physics D: Applied Physics, Vol. 33, 2000a, pp. L13– L17. DOI: https://doi.org/10.1088/0022-3727/33/2/102
Hoettges, K., Hughes, M., Cotton, A., Hopkins, N. and Mcdonell, M., Optimizing particle collection for enhanced surface-based biosensors., IEEE in Medicine and Biology Magazine, Vol. 22, 2003, pp. 68-74. DOI: https://doi.org/10.1109/MEMB.2003.1266049
Huang, Y., Wang, X-B., Tame, J. A. and Pethig, R., Electrokinetic behaviour of colloidal particles in travelling electric fields: studies using yeast cells., Journal of Physics D: Applied Physics, Vol. 26, 1993, pp. 1528-1535. DOI: https://doi.org/10.1088/0022-3727/26/9/030
Krommenhoek. E. E., Gardeniers, J. G. E., Bomer, J. G., Van Den Berg, A., LI, X., Ottens, M., Van Der Wielen, L. A. M., Van Dedem, G. W. K., Van Leeuwen, M., Van Gulik, W. M. and Heijnen, J. J., Monitoring of yeast cell concentration using a micromachined impedance senso., Sensors and Actuators B: Chemical, Vol. 115, 2005, pp. 384-389. DOI: https://doi.org/10.1016/j.snb.2005.09.028
Müller T., Pfennig A., Klein, P., Gradl, G., Jäger, M. and Schnelle, T., The potential of dielectrophoresis for single-cell experiments., IEEE in Medicine and Biology Magazine, Vol. 22, 2003, pp. 51 - 61. DOI: https://doi.org/10.1109/MEMB.2003.1266047
Paul, C. and Harrison, J., Transport, manipulation and reaction of biological cells on-chip using electrokinetic effects., Analytical Chemistry, Vol. 69, 1997, pp. 1564 – 1568. DOI: https://doi.org/10.1021/ac9606564
Pethig, R., Huang, Y., Wang, X-B. and Burt, J. P. H., Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes., Journal of Physics D: Applied Physics, Vol. 24, 1992, pp. 881-888. DOI: https://doi.org/10.1088/0022-3727/25/5/022
Pohl, H. A. and Schwar, J. P., Factors affecting separations of suspensions in nonuniform electric fields. Journal of Applied Physics, 1959, Vol. 30, pp. 69-73. DOI: https://doi.org/10.1063/1.1734977
Pohl, H. A. and Crane, J. S., Dielectrophoretic force, Journal of Theoretical Biology., Vol. 37, 1972, pp. 1-13. DOI: https://doi.org/10.1016/0022-5193(72)90112-9
Ramos, A., Morgan, H., Green, N. G. and Castellanos, A., AC electrokinetics: a review of forces in microelectrodes structures., Journal of Physics D: Applied Physics, Vol. 31, 1998, pp. 2338- 2353. DOI: https://doi.org/10.1088/0022-3727/31/18/021
Rosenthel, A. and Voldman, J., Dielectrophoretic traps for single particle patterning., Biophysical Journal, Vol. 88, 2005, pp. 2193-2205. DOI: https://doi.org/10.1529/biophysj.104.049684
Talary M., Burt, J. P. H., Tame, J. A. and Pethig, R., Electromanipulation and separation of cells using travelling electric fields., Journal of Physics D: Applied Physics, Vol. 29, 1996, pp. 2198- 2203. DOI: https://doi.org/10.1088/0022-3727/29/8/021
Talary, M. S., Burt, J. P., Tame, J. A. and Pethig, R., Future trends in diagnosis using laboratory-on-a-chip technologies., Parasitology, Vol. 117, 1998, pp. S191-S203. DOI: https://doi.org/10.1017/S0031182099004126
Tang, J., Gao, B., Huaizhi, G., Velev, O., Qin, Lu-chang. and Otto. Z., Assembly of 1D Nanostructures into Sub-Micrometer Diameter Fibrils with Controlled and Variable Length by Dielectrophoresis., Advanced Materials, Vol. 15, No. 16, 2003, pp. 1352-1355. DOI: https://doi.org/10.1002/adma.200305086
Velev, O. and Kaler, E., In situ assembly of colloidal particles into miniaturized biosensors., Langmuir, Vol. 15, 1999, pp. 3693– 3698. DOI: https://doi.org/10.1021/la981729c
Wang X-B., Huang, Y., Burt, J. P., Markx, G. H. and Pethig, R., Selective dielectrophoretic confinement of bioparticles in potential energy wells., Journal of Physics D: Applied Physics, Vol. 26, 1993, pp. 1278-1285. DOI: https://doi.org/10.1088/0022-3727/26/8/019
Wälti, C., Germishuizen, W., Tosch, P., Kaminski, C. and Davies, G. Electrokinetic manipulation of DNA. Journal of Physics D: Applied Physics, Vol. 40, 2007, pp. 114-118. DOI: https://doi.org/10.1088/0022-3727/40/1/S16
Zakhem, H., Lanoisellé, J., Lebovka, A., Nonus, M. and Vorobiev, E., Behavior of yeast cells in aqueous suspension affected by pulsed electric field., Journal of colloid and interface science, Vol. 300, 2006, pp.553-563. DOI: https://doi.org/10.1016/j.jcis.2006.04.055
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Khashayar Khoshmanesh, Chen Zhang, Francisco J. Tovar-Lopez, Saeid Nahavandi, Sara Baratchi, Arnan Mitchell, Kourosh Kalantar-Zadeh. (2010). Dielectrophoretic-activated cell sorter based on curved microelectrodes. Microfluidics and Nanofluidics, 9(2-3), p.411. https://doi.org/10.1007/s10404-009-0558-7.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2008 Flavio Humberto Fernández Morales, Julio Enrique Duarte, Joseph Samitier Martí
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.