Published

2008-09-01

Non-uniform electric field-induced yeast cell electrokinetic behavior

Comportamiento electrocinético de levaduras inducido por campos eléctricos no uniformes

DOI:

https://doi.org/10.15446/ing.investig.v28n3.15129

Keywords:

dielectrophoresis, cell handling, biochip (en)
dielectroforesis, manipulación de células, biochips (es)

Authors

  • Flavio Humberto Fernández Morales Universidad Pedagógica y Tecnológica de Colombia
  • Julio Enrique Duarte Universidad Pedagógica y Tecnológica de Colombia
  • Joseph Samitier Martí Universidad de Barcelon

Common dielectrophoresis (c-DEP, i.e. neutral matter motion induced by non-uniform electric fields) has become a basic phenomenon of biochips intended for medical, biological and chemical assays, especially when they imply bioparticle handling. This paper deals with modelling and experimental verification of a castellated, c-DEP-based, microelectrode array intended to handle biological objects. The proposed microsystem was developed employing platinum electrodes patterned by lift-off, silicon micro machining and photoresin patterning techniques. Saccharomyces cerevisiae were used as test bioparticles for experimental verification. Yeast cells were repelled toward electrode bays and toward interelectrodic gaps tor frequencies around 20 MHz where there is minimum electric field strength, corresponding to a negative dielectrophoretic phenomenon. Yeast cell agglomerations were observed around electrode edges for frequencies of around 2 MHz where there is maximum electric field strength, thereby verifying the positive dielectrophoretic phenomenon. Bioparticles were separated from the electrode edges when the working frequency was reduced and they were dragged towards the electrode centre, remaining there while the frequency was low enough.  Such atypical pattern may be explained due to the occurrence of positive dielectrophoresis overlap with electrohydrodynamic effects (i.e. the viscous drag force acting on the particles was greater than the dielectrophoretic force at frequencies where positive dielectrophoresis should occur). The experiments illustrated microsystem convenience in microhandling biological objects, the reby providing these microarrays’ possible use with other cells. Liquid motion resulting from electrohydrodynamic effects must also be taken into account when designing bioparticle micromanipulators, and could be used as a mechanism for cleaning electrode surfaces.

La dielectroforesis común (c-DEP), es decir, el movimiento de materia eléctricamente neutra inducido por campos eléctricos no uniformes, se ha convertido en un fenómeno fundamental dentro de los biochips dedicados a ensayos médicos, biológicos y químicos, especialmente cuando ellos implican la manipulación de biopartículas. El presente artículo describe el modelado y la verificación experimental de un arreglo de microelectrodos interdigitados, basado en c-DEP y destinado a manejar objetos biológicos. El microsistema propuesto se desarrolló empleando técnicas como lift-off para el grabado de electrodos de platino, micromecanizado de silicio y moldeado de resinas fotocurables. La verificación experimental se realizó utilizando Saccharomyces cerevisiae como biopartículas de prueba. Para frecuencias cercanas a 20 MHz se observó que las levaduras son repelidas hacia las bahías de los electrodos y hacia el espaciado interelectródico, donde el campo eléctrico es mínimo, lo cual corresponde al fenómeno de dielectroforesis negativa. Para frecuencias cercanas a 2 MHz se observó la aglomeración de levaduras en el borde de los electrodos, donde el campo eléctrico es máximo, verificando así el fenómeno de dielectroforesis positiva. Al reducir la frecuencia de operación, las biopartículas se desprenden del borde de los electrodos y son empujadas hacia el centro de los electrodos, permaneciendo allí mientras la frecuencia sea lo suficientemente baja. Este comportamiento atípico se puede explicar porque la dielectroforesis positiva se traslapa con los efectos electrohidrodinámicos, o sea que la fuerza de arrastre viscoso que actúa sobre las partículas es mayor que la fuerza dielectroforética, a frecuencias en donde la dielectroforesis positiva debería ocurrir. Los experimentos ilustran la conveniencia de los microsistemas como micromanipuladores de objetos biológicos, abriendo la posibilidad de utilizarlos con otro tipo de células. Adicionalmente, el movimiento del líquido, como resultado de efectos electrohidrodinámicos, debe ser tenido en cuenta cuando se diseñan micromanipuladores de biopartículas y podría ser utilizado como mecanismo para la limpieza de los electrodos.

References

Abidin, Z. Z., Dowes, L. and Markx, G. H., Novel electrode structures for large scale dielectrophoretic separations based on textile technology., Journal Biotechnology, Vol. 130, 2007, pp. 183- 187. DOI: https://doi.org/10.1016/j.jbiotec.2007.03.010

Dalton, C. and Kaler, K., An integrated PDMS microfluidic device for dielectrophoretic separation of malignant cells., Source: Proceedings of the 3rd International Conference on Microchannels and Minichannels, Vol. part B, 2005, pp. 411-418.

Fernández F.H. Design, assembly and testing of microsystems for dielectrophoresis-based bioparticle electrohandling, Doctoral thesis, Department of Electronics, University of Barcelona, Barcelona, Spain 2000.

Figeys, D. and Pinto, D. Lab-on-a-chip: A revolution in biological and medical sciences., Analytical Chemistry, Vol. 72, 2000, pp. 330a-335a. DOI: https://doi.org/10.1021/ac002800y

Fuhr, G. and Shirley, S. G., Biological application of microstructures., Topics in current chemistry, Vol.194, 1998, pp. 83-116. DOI: https://doi.org/10.1007/3-540-69544-3_4

Green, N. G. and Morgan, H., Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces., Journal of Physics D: Applied Physics, Vol. 31, 1998, pp. L25–L30. DOI: https://doi.org/10.1088/0022-3727/31/7/002

Green N. G., Ramos, A. and Morgan, H., AC electrokinetics: a survey of sub-micrometre particle dynamics., Journal of Physics D: Applied Physics, Vol. 33, 2000, pp. 632-641. DOI: https://doi.org/10.1088/0022-3727/33/6/308

Green N. G., Ramos, A. and González, A., Electric field induced fluid flow motion on microelectrodes; the effect of illumination., Journal of Physics D: Applied Physics, Vol. 33, 2000a, pp. L13– L17. DOI: https://doi.org/10.1088/0022-3727/33/2/102

Hoettges, K., Hughes, M., Cotton, A., Hopkins, N. and Mcdonell, M., Optimizing particle collection for enhanced surface-based biosensors., IEEE in Medicine and Biology Magazine, Vol. 22, 2003, pp. 68-74. DOI: https://doi.org/10.1109/MEMB.2003.1266049

Huang, Y., Wang, X-B., Tame, J. A. and Pethig, R., Electrokinetic behaviour of colloidal particles in travelling electric fields: studies using yeast cells., Journal of Physics D: Applied Physics, Vol. 26, 1993, pp. 1528-1535. DOI: https://doi.org/10.1088/0022-3727/26/9/030

Krommenhoek. E. E., Gardeniers, J. G. E., Bomer, J. G., Van Den Berg, A., LI, X., Ottens, M., Van Der Wielen, L. A. M., Van Dedem, G. W. K., Van Leeuwen, M., Van Gulik, W. M. and Heijnen, J. J., Monitoring of yeast cell concentration using a micromachined impedance senso., Sensors and Actuators B: Chemical, Vol. 115, 2005, pp. 384-389. DOI: https://doi.org/10.1016/j.snb.2005.09.028

Müller T., Pfennig A., Klein, P., Gradl, G., Jäger, M. and Schnelle, T., The potential of dielectrophoresis for single-cell experiments., IEEE in Medicine and Biology Magazine, Vol. 22, 2003, pp. 51 - 61. DOI: https://doi.org/10.1109/MEMB.2003.1266047

Paul, C. and Harrison, J., Transport, manipulation and reaction of biological cells on-chip using electrokinetic effects., Analytical Chemistry, Vol. 69, 1997, pp. 1564 – 1568. DOI: https://doi.org/10.1021/ac9606564

Pethig, R., Huang, Y., Wang, X-B. and Burt, J. P. H., Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes., Journal of Physics D: Applied Physics, Vol. 24, 1992, pp. 881-888. DOI: https://doi.org/10.1088/0022-3727/25/5/022

Pohl, H. A. and Schwar, J. P., Factors affecting separations of suspensions in nonuniform electric fields. Journal of Applied Physics, 1959, Vol. 30, pp. 69-73. DOI: https://doi.org/10.1063/1.1734977

Pohl, H. A. and Crane, J. S., Dielectrophoretic force, Journal of Theoretical Biology., Vol. 37, 1972, pp. 1-13. DOI: https://doi.org/10.1016/0022-5193(72)90112-9

Ramos, A., Morgan, H., Green, N. G. and Castellanos, A., AC electrokinetics: a review of forces in microelectrodes structures., Journal of Physics D: Applied Physics, Vol. 31, 1998, pp. 2338- 2353. DOI: https://doi.org/10.1088/0022-3727/31/18/021

Rosenthel, A. and Voldman, J., Dielectrophoretic traps for single particle patterning., Biophysical Journal, Vol. 88, 2005, pp. 2193-2205. DOI: https://doi.org/10.1529/biophysj.104.049684

Talary M., Burt, J. P. H., Tame, J. A. and Pethig, R., Electromanipulation and separation of cells using travelling electric fields., Journal of Physics D: Applied Physics, Vol. 29, 1996, pp. 2198- 2203. DOI: https://doi.org/10.1088/0022-3727/29/8/021

Talary, M. S., Burt, J. P., Tame, J. A. and Pethig, R., Future trends in diagnosis using laboratory-on-a-chip technologies., Parasitology, Vol. 117, 1998, pp. S191-S203. DOI: https://doi.org/10.1017/S0031182099004126

Tang, J., Gao, B., Huaizhi, G., Velev, O., Qin, Lu-chang. and Otto. Z., Assembly of 1D Nanostructures into Sub-Micrometer Diameter Fibrils with Controlled and Variable Length by Dielectrophoresis., Advanced Materials, Vol. 15, No. 16, 2003, pp. 1352-1355. DOI: https://doi.org/10.1002/adma.200305086

Velev, O. and Kaler, E., In situ assembly of colloidal particles into miniaturized biosensors., Langmuir, Vol. 15, 1999, pp. 3693– 3698. DOI: https://doi.org/10.1021/la981729c

Wang X-B., Huang, Y., Burt, J. P., Markx, G. H. and Pethig, R., Selective dielectrophoretic confinement of bioparticles in potential energy wells., Journal of Physics D: Applied Physics, Vol. 26, 1993, pp. 1278-1285. DOI: https://doi.org/10.1088/0022-3727/26/8/019

Wälti, C., Germishuizen, W., Tosch, P., Kaminski, C. and Davies, G. Electrokinetic manipulation of DNA. Journal of Physics D: Applied Physics, Vol. 40, 2007, pp. 114-118. DOI: https://doi.org/10.1088/0022-3727/40/1/S16

Zakhem, H., Lanoisellé, J., Lebovka, A., Nonus, M. and Vorobiev, E., Behavior of yeast cells in aqueous suspension affected by pulsed electric field., Journal of colloid and interface science, Vol. 300, 2006, pp.553-563. DOI: https://doi.org/10.1016/j.jcis.2006.04.055

How to Cite

APA

Fernández Morales, F. H., Duarte, J. E. and Samitier Martí, J. (2008). Non-uniform electric field-induced yeast cell electrokinetic behavior. Ingeniería e Investigación, 28(3), 116–121. https://doi.org/10.15446/ing.investig.v28n3.15129

ACM

[1]
Fernández Morales, F.H., Duarte, J.E. and Samitier Martí, J. 2008. Non-uniform electric field-induced yeast cell electrokinetic behavior. Ingeniería e Investigación. 28, 3 (Sep. 2008), 116–121. DOI:https://doi.org/10.15446/ing.investig.v28n3.15129.

ACS

(1)
Fernández Morales, F. H.; Duarte, J. E.; Samitier Martí, J. Non-uniform electric field-induced yeast cell electrokinetic behavior. Ing. Inv. 2008, 28, 116-121.

ABNT

FERNÁNDEZ MORALES, F. H.; DUARTE, J. E.; SAMITIER MARTÍ, J. Non-uniform electric field-induced yeast cell electrokinetic behavior. Ingeniería e Investigación, [S. l.], v. 28, n. 3, p. 116–121, 2008. DOI: 10.15446/ing.investig.v28n3.15129. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/15129. Acesso em: 29 mar. 2024.

Chicago

Fernández Morales, Flavio Humberto, Julio Enrique Duarte, and Joseph Samitier Martí. 2008. “Non-uniform electric field-induced yeast cell electrokinetic behavior”. Ingeniería E Investigación 28 (3):116-21. https://doi.org/10.15446/ing.investig.v28n3.15129.

Harvard

Fernández Morales, F. H., Duarte, J. E. and Samitier Martí, J. (2008) “Non-uniform electric field-induced yeast cell electrokinetic behavior”, Ingeniería e Investigación, 28(3), pp. 116–121. doi: 10.15446/ing.investig.v28n3.15129.

IEEE

[1]
F. H. Fernández Morales, J. E. Duarte, and J. Samitier Martí, “Non-uniform electric field-induced yeast cell electrokinetic behavior”, Ing. Inv., vol. 28, no. 3, pp. 116–121, Sep. 2008.

MLA

Fernández Morales, F. H., J. E. Duarte, and J. Samitier Martí. “Non-uniform electric field-induced yeast cell electrokinetic behavior”. Ingeniería e Investigación, vol. 28, no. 3, Sept. 2008, pp. 116-21, doi:10.15446/ing.investig.v28n3.15129.

Turabian

Fernández Morales, Flavio Humberto, Julio Enrique Duarte, and Joseph Samitier Martí. “Non-uniform electric field-induced yeast cell electrokinetic behavior”. Ingeniería e Investigación 28, no. 3 (September 1, 2008): 116–121. Accessed March 29, 2024. https://revistas.unal.edu.co/index.php/ingeinv/article/view/15129.

Vancouver

1.
Fernández Morales FH, Duarte JE, Samitier Martí J. Non-uniform electric field-induced yeast cell electrokinetic behavior. Ing. Inv. [Internet]. 2008 Sep. 1 [cited 2024 Mar. 29];28(3):116-21. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/15129

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Khashayar Khoshmanesh, Chen Zhang, Francisco J. Tovar-Lopez, Saeid Nahavandi, Sara Baratchi, Arnan Mitchell, Kourosh Kalantar-Zadeh. (2010). Dielectrophoretic-activated cell sorter based on curved microelectrodes. Microfluidics and Nanofluidics, 9(2-3), p.411. https://doi.org/10.1007/s10404-009-0558-7.

Dimensions

PlumX

Article abstract page views

328

Downloads

Download data is not yet available.