Distribución λ-Generalizada en la simulación de sistemas estocásticos complejos
DOI:
https://doi.org/10.15446/ing.investig.n45.21312Keywords:
Distribución λ-generalizada, Sistema complejo, Autómata de aprendizaje, Plan adaptativo, Variable aleatoria, Vida artificial (es)Generalize Lambda Distribution, Complex System, Learning automata, Adaptative plan, Random variate, Artificial Life (en)
Downloads
En este artículo se presenta una técnica para diseñar modelos estocásticos de sistemas complejos adaptativos empleando redes de autómatas. El método consiste en modelar los elementos de un sistema mediante autómatas de aprendizaje, luego determinar las relaciones estocásticas y determinísticas que permiten la interacción entre tales componentes para, de esta manera, constituir una red de autómatas como abstracción de la estructura del sistema en estudio. Así mismo, para modelar su dinámica se propone el diseño de un plan adaptativo en el cual deben construirse los operadores que otorgan a la estructura la posibilidad de evolucionar. Una vez construida la red adaptativa de autómatas puede simularse mediante la construcción adecuada de generadores de variables aleatorias a través de la distribución λ-generalizada.
Específicamente, éstos generadores son usados en la simulación de las relaciones estocásticas de los autómatas de aprendizaje y en la selección de los operadores en el plan adaptativo. El método no solo es útil en el análisis de sistemas complejos, sino que permite construir organismos dotados con vida artificial.
This paper presents a technique to design computers stochastic models of adaptative complex systems using automata nets. The method consists in construct models for subsystems through learning automata, after that, it is necessary find the random relationships that allow interactions between components. So, it is possible construct an automata net as a model of the system in study.
In the same way, it is possible design an adaptative plan to represent the systems change as a space-time function. The model so construct can be simulated, in a computer, using generators of random vectors. In specific, these vectors are used in both simulation of the relationships between different automatas and in the adaptative plan operators.
This method can be used not only to know about natural complex systems but also in design of synthetic complex organisms that presents artificial life properties.
References
Devroye, Luc. Non-Uniform Random Variate Generation. Editorial Springer-Velag. 1986. DOI: https://doi.org/10.1007/978-1-4613-8643-8
Garzon, M. Cellular Automata and Discrete Neural Networks, Physica D 45, 431-440. 1990 DOI: https://doi.org/10.1016/0167-2789(90)90200-9
____ Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks, Springer-Verlag, 1995. 1996
____ Evolutionary Computation: Evolution in Evolution. En Memorias del Primer Congreso Nacional de Neurocomputación. Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43-51, 1996.
Golberg, D. E., "Genetic Algorithms”: En Search, Optimization, and Machine Learning. Addisson-Wesley, 1989.
Goles, E (1990), Automata Networks, Birkhauser, 1990. DOI: https://doi.org/10.1007/978-94-009-0529-0
Holland J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press, 1992. DOI: https://doi.org/10.7551/mitpress/1090.001.0001
Kosko B. Neural Networks and Fuzzy Systems: A Dynamical Systems Approach. Prentice-Hall, 1992.
Krzanowski, W.J. Multivariate Analysis: Distributions, Ordination and Inference. 1994.
Narendra, K. and Thathachar M.A.L. (1989), Learning Automata: An Introduction. Prentice-Hall.
Ramberg, et al “A Probability Distribution and Its Uses in Fitting Data”. Technometrics, Vol 21, No. 2 May 1.979. DOI: https://doi.org/10.1080/00401706.1979.10489750
Zavan, A. Karian y Edward, J. Dudewicz. Modern Statistical, Systems and GPSS Simulation. 1992.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2000 Jorge Eduardo Ortíz Triviño

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.