Published

2011-09-01

A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination

Producción de recubrimientos duros a partir de tratamientos dúplex usando la combinación recubrimiento electrolítico - tratamiento termoquímico. Revisión

DOI:

https://doi.org/10.15446/ing.investig.v31n3.26373

Keywords:

Duplex treatment, electroplated coating, thermochemical treatment, nitriding, carburising, nitrocarburising, plasma (en)
tratamientos dúplex, recubrimientos electrolíticos, tratamientos termoquímicos, nitruración, carburización, nitrocarburización, plasma (es)

Authors

  • Héctor Cifuentes Aya Universidad Nacional de Colombia
  • Jhon Jairo Olaya Flórez Universidad Nacional de Colombia

Duplex treatments have been developed to overcome the disadvantages presented by simple treatments to surfaces of different materials and have, in a combined and complementary way, the properties that each of these methods supplies individually. The difference between thermal expansion coefficients for Fe and Cr in hard chrome plating leads to crack formation in the deposited coat, through which corrosive agents migrate and reduce the system's integrity. Direct deposition by physical vapour deposition (PVD), used for obtaining chromium nitride films on steel substrates, is limited by high production costs, the low thickness obtained and low resistance to corrosion due to the presence of micro pores. Some studies have combined an electroplated chromium with thermochemical treatments made in a controlled atmosphere or vacuum furnaces or by plasma. This kind of duplex treatment allows compounds such as CrxN, CrxCyN and CrxCy to be obtained from chemical and micro structural transformation of chromium with nitrogen and/or carbon, the sealing of cracks in the coating and increasing the magnitude of properties like hardness and density, improving wear and abrasion and corrosion resistance.

Los tratamientos dúplex se han desarrollado con el objetivo de superar las desventajas presentadas por tratamientos simples realizados sobre superficies de diferentes materiales y contar, en forma combinada y complementaria, con las propiedades que cada uno de estos métodos suministra individualmente. En el caso de recubrimientos electrolíticos de cromo duro la diferencia entre los coeficientes de expansión térmica del hierro y el cromo produce grietas en la película depositada, a través de las cuales migran agentes corrosivos que conducen a la pérdida de la integridad del sistema. Asimismo, la obtención de películas de nitruro de cromo sobre sustratos de acero mediante deposición directa por deposición física de vapor (Physical Vapor Deposition, PVD, por sus siglas en inglés), está limitada debido a su elevado costo, bajo espesor obtenido y baja resistencia a la corrosión por presencia de microporos. Se han realizado estudios que combinan recubrimientos electrolíticos de cromo con tratamientos termoquímicos realizados por plasma o en hornos de atmósfera controlada o bajo vacío, con los cuales se han obtenido, por transformación química y microestructural con nitrógeno o carbono, compuestos tipo CrxN, CrxCyN y CrxCy que permiten superar las desventajas mencionadas por sellado de las grietas de la película de cromo duro e incremento en la magnitud de sus valores de dureza y densidad, con mejora en la resistencia al desgaste y corrosión.

Producción de recubrimientos duros a partir de tratamientos dúplex usando la combinación recubrimiento electrolítico - tratamiento termoquímico. Revisión

A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination

Héctor Cifuentes Aya1, Jhon Jairo Olaya Flórez2

1 Ingeniero Mecánico, Universidad Nacional de Colombia. Magíster en Educación-Docencia Universitaria, Universidad Pedagógica Nacional. Candidato a Doctor en Ingeniería, Ciencia y Tecnología de materiales, Universidad Nacional de Colombia. Profesor asistente, Universidad Nacional de Colombia. hcifuentesa@unal.edu.co

2 Ingeniero Metalúrgico, Magíster en Materiales y Procesos, Universidad Nacional de Colombia. Doctor en Ingeniería, Universidad Nacional Autónoma de México. Profesor Asociado, Universidad Nacional de Colombia. jjolayaf@unal.edu.co


RESUMEN

Los tratamientos dúplex se han desarrollado con el objetivo de superar las desventajas presentadas por tratamientos simples realizados sobre superficies de diferentes materiales y contar, en forma combinada y complementaria, con las propiedades que cada uno de estos métodos suministra individualmente. En el caso de recubrimientos electrolíticos de cromo duro la diferencia entre los coeficientes de expansión térmica del hierro y el cromo produce grietas en la película depositada, a través de las cuales migran agentes corrosivos que conducen a la pérdida de la integridad del sistema. Asimismo, la obtención de películas de nitruro de cromo sobre sustratos de acero mediante deposición directa por deposición física de vapor (Physical Vapor Deposition, PVD, por sus siglas en inglés), está limitada debido a su elevado costo, bajo espesor obtenido y baja resistencia a la corrosión por presencia de microporos. Se han realizado estudios que combinan recubrimientos electrolíticos de cromo con tratamientos termoquímicos realizados por plasma o en hornos de atmósfera controlada o bajo vacío, con los cuales se han obtenido, por transformación química y microestructural con nitrógeno o carbono, compuestos tipo CrxN, CrxCyN y CrxCy que permiten superar las desventajas mencionadas por sellado de las grietas de la película de cromo duro e incremento en la magnitud de sus valores de dureza y densidad, con mejora en la resistencia al desgaste y corrosión

Palabras clave: tratamientos dúplex, recubrimientos electrolíticos, tratamientos termoquímicos, nitruración, carburización, nitrocarburización, plasma.


ABSTRACT

Duplex treatments have been developed to overcome the disadvantages presented by simple treatments to surfaces of different materials and have, in a combined and complementary way, the properties that each of these methods supplies individually. The difference between thermal expansion coefficients for Fe and Cr in hard chrome plating leads to crack formation in the deposited coat, through which corrosive agents migrate and reduce the system's integrity.

Direct deposition by physical vapour deposition (PVD), used for obtaining chromium nitride films on steel substrates, is limited by high production costs, the low thickness obtained and low resistance to corrosion due to the presence of micro pores. Some studies have combined an electroplated chromium with thermochemical treatments made in a controlled atmosphere or vacuum furnaces or by plasma. This kind of duplex treatment allows compounds such as CrxN, CrxCyN and CrxCy to be obtained from chemical and micro structural transformation of chromium with nitrogen and/or carbon, the sealing of cracks in the coating and increasing the magnitude of properties like hardness and density, improving wear and abrasion and corrosion resistance.

Keywords: Duplex treatment, electroplated coating, thermochemical treatment, nitriding, carburising, nitrocarburising, plasma


Recibido: enero 19 de 2011 Aceptado: noviembre 15 de 2011


Introducción

Los elementos constitutivos de una máquina se encuentran sometidos a diferentes tipos de fenómenos físicos o químicos (ambientes corrosivos, altas temperaturas, cargas de contacto, fatiga) que pueden conducir a la pérdida gradual de su integridad funcional por procesos de degradación que generalmente se inician en su superficie (Batchelor et al., 2002; ASM, IOM Communications, 2005). Con el objetivo de prolongar su vida útil, disponibilidad y confiabilidad, se han desarrollado diversos tratamientos superficiales, los cuales, a partir de la adición intencional de una nueva capa o por modificación superficial o sub superficial sin crecimiento intencional o incremento en las dimensiones de la pieza (ASM Handbook, vol. 4, 1991; Celis et al., 1999), confieren a esta región de pocos diámetros moleculares, con microestructura, composición química y comportamiento distinto al material del sustrato, propiedades que le permiten enfrentar variadas condiciones de uso (Kaufmann, 2002). Sin embargo, cada tratamiento aplicado en forma individual puede presentar desventajas que afectan el desempeño final de la capa. En el caso de los recubrimientos electrolíticos de cromo duro, el desarrollo y relevo de esfuerzos residuales en el sistema sustrato/ recubrimiento (Nakhimov et al., 1968; Pina et al., 1997; Torres-González y Benaben, 2003) durante el proceso de deposición genera microgrietas en la capa depositada con efectos adversos sobre propiedades mecánicas, coeficiente de fricción, reducción en la resistencia a la corrosión y al desgaste (Karpov, 2001; Kim et al., 2003; Nam et al., 2004; Wang et al., 2005; Sommers et al., 2005; Ajikumar et al., 2006), en especial a temperaturas superiores a 623 °K (Menthe y Rie, 1999).

Otros procesos, como la aplicación de los tratamientos por deposición directa por PVD para la obtención de películas de ni-truro de cromo (CrxN) sobre sustratos de acero, se ven limitados por su elevado costo de producción, baja resistencia a la corrosión debido a la presencia de microporos (Creus et al., 1998), bajo espesor -alrededor de 5 µm- y altos esfuerzos residuales de compresión generados por la gran diferencia existente entre los coeficientes de expansión térmica de los compuestos CrxN y el sustrato de acero (relación 1:6), sobre todo en aplicaciones a temperatura alta (Ajikumar et al., 2006; Buijnsters et al., 2003). En los últimos años se han desarrollado diversas combinaciones de tratamientos superficiales cuyo diseño se caracteriza por ser económico y técnicamente viable y por conformar un tratamiento dúplex que integra las ventajas de los procesos simples y permite producir superficies con capas multicomponentes o compuestas con características fisicoquímicas superiores no obtenibles por otros procesos (Matthews y Leyland, 1995; Kessler et al., 1998; Celis et al.,1999; Wierzchon, 2004).

En este artículo se hace una revisión de los desarrollos en tratamientos superficiales que combinan la aplicación de cromo duro electrolítico como método de adición de capas desde una fase líquida sobre un acero, con tratamientos termoquímicos de nitruración, nitrocarburización y carburización que transforman química y microestructuralmente el recubrimiento desde una fase gaseosa o por plasma. Se selecciona este proceso dúplex por su elevado impacto industrial asociado al incremento en los valores de propiedades químicas y mecánicas en las capas superficiales de las piezas tratadas, por la obtención de una combinación de propiedades que permiten soportar cargas complejas - p. e., aumento de la resistencia al sinergismo fatiga-corrosión- (Celis et al., 1999; Kessler et al., 1998). En particular se enfatiza en tratamientos dúplex en fase gaseosa al vacío por la ganancia económica generada al obtener capas duras compuestas a un costo inferior a las producidas por otras técnicas como PVD (ASM - IOM Communications, 2005), así como por su impacto en la potencial reducción de pérdidas debidas a la corrosión, que pueden alcanzar el 5% del PIB de muchos países (Groysman y Brodsky, 2006) -276 billones de dólares en Estados Unidos, equivalente al 3,1% del PIB en el año 2001- (ASM Handbook, vol. 13A, 2003).

Recubrimientos electrolíticos de cromo duro combinado con tratamientos termoquímicos

Estos tratamientos dúplex se inician con la deposición de un recubrimiento electrolítico de cromo duro sobre un sustrato metálico ferroso. Las características del recubrimiento se seleccionan según la dureza, resistencia al desgate y espesor requeridos, forma y tamaño de la pieza, metal base y especificaciones dimensionales. El recubrimiento obtenido es sometido a un proceso de limpieza superficial químico-mecánico (Groover, 2007). El sustrato así tratado se ubica luego en una cámara de plasma, en un horno de bajo vacío o en un horno de atmósfera controlada. Esta cámara puede ser evacuada previamente y sometida a purga con gases inertes como argón, con la finalidad de minimizar la presión parcial de O2 y prevenir sus efectos corrosivos. Posteriormente se realiza el tratamiento termoquímico seleccionado (nitruración, nitrocarburización, carburización), en fase gaseosa o por interacción con un plasma. Para ello, se reduce la presión en la cámara al orden de 10-2 Pa, a una temperatura en función, entre otros factores del tipo de gas precursor utilizado. Por ejemplo, para nitruración gaseosa con NH3 se ha reportado que la formación de compuestos tipo CrxN ocurre a T ≥ 873 °K (Ajikumar et al., 2006; Buijnsters et al., 2003; Basu et al., 2007). A los efectos de evitar la corrosión del sistema obtenido al final del tratamiento se realiza el enfriamiento en la cámara u horno al vacío en presencia de los gases precursores utilizados. Los tratamientos termoquímicos permiten obtener las especies atómicas (N o C) que posteriormente difundirán en la superficie del recubrimiento de cromo duro a partir del desarrollo de fenómenos propios de la cinética química (King et al., 2005; Pierson, 1999). En procesos heterogéneos la adsorción química de los reactantes por sitios activos de la superficie del sustrato metálico (Whitten y Yang, 1996) permite iniciar la disociación de los gases portadores presentes en la atmósfera y desarrollar los potenciales químicos y las actividades requeridas para el tratamiento (Mittemeijer y Slycke, 1996) que posteriormente, a partir de un proceso de difusión reactiva, conduce al desarrollo de las fases deseadas (Arkharov y Konev, 1960) (figura 1).

Recubrimientos de cromo duro electrolítico combinados con tratamientos termoquímicos de nitruración

Este tratamiento combina la deposición de un recubrimiento electrolítico de cromo duro sobre un sustrato ferroso como método de adición de capas desde una fase líquida, con un tratamiento termoquímico de nitruración como método de transformación superficial ya sea por nitruración por plasma o en hornos de atmósfera controlada o de bajo vacío (nitruración gaseosa). Con este tratamiento se obtienen capas superficiales y subsuperficiales de compuestos tipo CrxN las cuales sellan las grietas del cromo electrolítico y generan una barrera que impide que los agentes corrosivos alcancen la superficie del sustrato. Diversas investigaciones relacionadas con nitruración por plasma (Menthe y Rie, 1999; Lunarska et al., 2001; Kuppusami et al., 2002; Wang et al., 2003; Poporska, 2005; Wang et al., 2007; Dasgupta et al., 2007; Han et al., 2009; Keshavarz et al., 2009) y con nitruración gaseosa sobre sustratos de cromo o cromo aplicado electrolíticamente (Buijnsters et al., 2003; Ajikumar, 2004; Ajikumar et al., 2006; Nam y Lee, 2007) han estudiado la micro-estructura del sistema metalúrgico obtenido, el efecto de los parámetros de producción (tiempo y temperatura) sobre la resistencia a la corrosión, resistencia al desgaste y dureza, y su potencial aplicación, por ejemplo, a celdas de combustible. La nitrura-ción transforma química y microestructuralmente la capa de cromo como resultado de la reacción entre el nitrógeno atómico obtenido por disociación de los gases precursores (N2, NH3), ya sea en la descarga luminosa de plasma o por reacción heterogénea entre el gas portador y la superficie del recubrimiento metálico de cromo, en la cual difunden estos átomos. En el proceso de nitruración gaseosa la temperatura de trabajo puede ser inferior a 1273 °K cuando se utilizan mezclas de gases NH3/Ar en varias proporciones (Buijnsters et al., 2003; Ajikumar et al., 2006; Basu et al., 2007; Nam y Lee, 2007). Cuando la T > 1273 °K se puede utilizar N2 como gas precursor de nitrógeno atómico, ya que este gas disocia a T > 1273 °K (Grafën y Edenhofer, 2005). Como producto de esta reacción se puede obtener, en general, una estructura tipo multicapas (figura 2) constituida por:

1. Una capa compuesta superficial externa de nitruros de cromo (CrxN), seguida de una mezcla de CrN/Cr2N y debajo de estas regiones Cr2N/Cr (Ajikumar et al., 2006). Se ha sugerido (Matthews y Leyland, 1995) que la fase subestequiométrica Cr2N es la primera en formarse y posteriormente se obtiene la fase estequiométrica CrN. Por otra parte, la presencia de las distintas fases en la capa compuesta también es función de la temperatura del proceso -entre 873 y 973 °K se obtiene Cr2N/Cr, entre 973 y 1323 °K se logra CrN/Cr2N, y si T > 1323 °K se produce Cr2N superficial por inestabilidad termodinámica de la fase CrN- (Kuppusami et al., 2002).

2. Una región no modificada de recubrimiento electrolítico de cromo.

3. Una capa interna de carburos de cromo (CrxCy). Por efecto de la temperatura del tratamiento se produce descarburización del sustrato ferroso y difusión de átomos de carbono hacia el recubrimiento de cromo en la interfaz recubrimiento-sustrato. La formación de compuestos tipo (Cr, Fe)7C3 (Poporska, 2005) se relaciona con la energía libre asociada la formación de carburos de Cr y Fe, cuyo cambio para una temperatura de 973 °K es en el Cr23C6 aproximadamente de -380 KJ/mol, mientras que en la formación de Fe3C es de -5 KJ/mol. De aquí la mayor afinidad del C por el Cr que por el Fe y la estabilidad de los carburos de cromo desarrollados. De otra parte, Kim et al (2003) reportan la formación de carburos de cromo en la interfaz recubrimiento-sustrato por transformación de la capa inicial de cromo amorfo obtenida en el baño electrolítico modificado con compuestos orgánicos (formamida).

4. Un sustrato no modificado.

La identificación de las fases y las orientaciones cristalinas de las fases presentes se determinó mediante difracción de rayos X (XRD) con un sistema X-PertPro Panalytical en modo Bragg-Brentano con radiación monocromática de Cuα y longitud de onda 1.540998 Å. La figura 3 presenta estos resultados de XRD y la sección transversal obtenidos con un proceso de nitruración de sustratos ferrosos (H13) recubierto electrolíticamente con cromo, en atmósfera gaseosa a bajo vacío, con N2 como gas precursor de nitrógeno. Se han obtenido capas transformadas constituidas preferentemente por nitruros de cromo Cr2N y durezas con valores hasta de 2.200 HV0,5.

El desarrollo de las capas compuestas externas de nitruro de cromo (CrxN) y capas internas de carburos de cromo (CrxCy) conduce al incremento en la resistencia a la corrosión del sustrato ferroso (Han et al., 2009; Keshavarz et al., 2009) producto de la formación de compuestos cerámicos y por el proceso de sellado que realizan los nitruros y carburos de cromo en las grietas propias del recubrimiento electrolítico, el cual evita que los agentes corrosivos penetren hasta el sustrato ocasionando procesos corrosivos (Menthe y Rie, 1999; Kim et al., 2003; Somers y Christiansen, 2005). Además, capas superficiales del tipo CrxN producidas a partir de aceros previamente recubiertos con cromo puro producidos por PVD presentan un rendimiento mejor en ambientes corrosivos debido a su microestructura de grano columnar más densa y menor porosidad intergranular (Ahn et al., 2002). Se genera también un aumento de la resistencia al desgaste y la erosión (ASM Handbook, vol. 4, 1991; Celis et al., 1999; Somers y Christiansen, 2005) y se mantienen los valores de dureza a alta temperatura (Pina et al., 1997; Ahn et al., 2002; Wang et al., 2005; Wang et al., 2007).

Recubrimientos de cromo duro electrolítico combinados con tratamiento termoquímico de nitrocarburización

Este tipo de tratamiento transforma química y microestructuralmente el recubrimiento electrolítico de cromo por difusión de átomos de nitrógeno y carbono en su superficie. Se ha estudiado el efecto de la nitrocarburización por plasma realizada con mezclas de N2/H2/CH4 y NH3/CH4 (Wang et al., 2005) como gases precursores de carbono y nitrógeno, sobre la microestructura y propiedades en recubrimientos de cromo electroplateado (Menthe y Rie, 1999; Wang et al., 2005; Hedaiat Mofidi et al., 2008). Desde el punto de vista estructural se obtienen capas de nitruros de cromo tipo CrxN a partir de disociación de amoniaco (NH3) y metano -CH4- (Wang et al., 2005) o de N2 (Menthe y Rie, 1999). Cuando la temperatura de tratamiento es superior a los 1173 °K se forma una capa externa enriquecida con carbono seguida de carburos de cromo tipo CrxCy -Cr3C2 y Cr7C3- (Menthe y Rie, 1999). Se forma, además, una capa interna de carburos de cromo en la interfaz sustrato-recubrimiento la cual, al igual que en el proceso combinado con nitruración, se asocia a descarburización del acero seguida de difusión al recubrimiento de cromo y formación de compuestos tipo CrxCy (Wang et al., 2005). La microestructura final depende de la temperatura y el tiempo de proceso (Menthe y Rie, 1999).Dentro de las ventajas asociadas a la aplicación de este proceso combinado se encuentra un incremento elevado en los valores de dureza hasta 1.450 HV (Nam et al., 2004) o 2.200 HK(Menthe y Rie, 1999; Rie, 1999), superiores a los obtenidos con el proceso de nitruración, así como el sellado de microgrietas propias del proceso de recubrimiento electrolítico con incremento en la resistencia a la corrosión (Menthe y Rie, 1999; Rie, 1999; Wang et al., 2005) debido a los altos valores del espesor de capa (Hedaiat Mofidi et al., 2008). Se presenta también una disminución en la tasa de desgaste asociada a la presencia de carburos de cromo en el sistema y en la nitruración.

Nam et al. (2004) han realizado estudios sobre tratamientos termoquímicos en vacío con el objetivo de mejorar la resistencia de Cr (III) electroplateado mediante procesos de oxinitrocarburización en atmósferas constituidas por una mezcla de gases NH3/ N2/CO2. Como resultado del tratamiento se obtiene un sistema de compuestos Fe3O4/Fe2O3/Fe4N sin presencia de formación de nitruros de cromo. El autor relaciona este hecho con la baja energía del proceso. Los resultados obtenidos muestran que las grietas propias del recubrimiento electrolítico de cromo duro, en vez de ser selladas, incrementan su magnitud. Sin embargo, se producen compuestos tipo CrxCy por efecto del agregado de aditivos en la preparación del cromado. Resultados similares también fueron obtenidos por Kim (2003). La microestructura basada en carburos de metales de transición produce incremento en la dureza del sistema y de su resistencia al desgaste. Aunque las grietas del recubrimiento no son selladas, se favorece la resistencia a la corrosión por la formación de óxidos de hierro (FexOy) y nitruro de hierro (Fe4N).

Recubrimientos de cromo duro electrolítico combinados con tratamiento termoquímico de carburización

El estudio del tratamiento termoquímico de carburización en vacío muestra avances importantes, como lo demuestran los desarrollos logrados por Basu et al., 2007; Zhang et al., 2006; Gawrónski, 2000; Weber, 1982; Krishtal et al., 1980. Este proceso permite trabajar con atmósferas "libres de oxígeno" y transformar aceros aleados que poseen en su composición química elementos fuertemente formadores de óxidos (Morral y Law, 1990). También se han desarrollado procesos que combinan bajo vacío con altas temperaturas (Grafën y Edenhofer, 2005) con menor tiempo de trabajo, mejores propiedades mecánicas al prevenir la corrosión intergranular, mayor control de proceso generando uniformidad y repetitividad en él, así como un mejor control de la profundidad de capa y menor impacto ambiental según el gas precursor de carbono utilizado -preferiblemente acetileno- (Tsepov, 1979; Kristhal y Tsepov, 1980; Hitoshi, 2005). En la industria, la importancia de este tratamiento se evidencia a partir de su desarrollo en el tratamiento de moldes, matrices y herramientas (Oleinik, 2004), o por innovaciones tecnológicas como la carburización en vacío con acetileno que permite, entre otros aspectos, eliminar impurezas como hollín y alquitrán con incremento en la potencia de carburización, repetitividad del proceso y mayor calidad superficial. Sin embargo, con relación al tipo de tratamiento dúplex tan solo existe el reporte del trabajo de Arkharov et al. [1974], en el cual se transforma cromo electrolítico aplicado sobre acero estructural mediante un tratamiento termoquímico en atmósfera gaseosa controlada (mezcla de benceno vaporizado como agente precursor de carbono con argón o con hidrógeno, temperatura de 1.323 °K) con obtención de carburos de cromo (CrxCy) tanto en la superficie del recubrimiento de cromo electrolítico, como en la interfaz de este con el sustrato ferroso por efusión de carbono.

La tabla 1 muestra un cuadro sinóptico comparativo de resultados obtenidos con tratamientos dúplex que combinan recubrimientos electrolíticos de cromo duro sobre sustratos ferrosos y procesos de nitruración y nitrocarburización.

Conclusiones

Diversos estudios muestran que la realización de tratamientos termoquímicos sobre recubrimientos electrolíticos de cromo duro contribuye al mejoramiento de sus propiedades fisicoquímicas, estructurales y microestructurales. Esta mejora obedece a la formación de fases tipo nitruro o carburo de cromo, superficial y subsuperficialmente. Los principales avances se han logrado con procesos de nitruración por plasma o en atmósferas gaseosas al vacío. Si bien el desarrollo de fases CrxN se inicia a 600 °C, su formación sobre cromo se evidencia mejor a T > 700 °C. La fase Cr2N+Cr aparece a T > 700 °C, luego a 700 °C > T < 1.000 °C se presentan fases CrN+Cr2N y Cr2N si T > 1.000 °C, por inestabilidad termodinámica de CrN. Los espesores transformados varían entre 1 y 20 y las durezas alcanzan valores hasta de 22 GPa, tanto en tratamientos por plasma como en atmósfera gaseosa. Se presenta además formación de compuestos tipo CrxCy por efusión de carbono hacia el cromo en la interfaz con el sustrato.

Estas fases sellan las grietas propias del recubrimiento electrolítico y actúan como barrera que impide el acceso de agentes corrosivos a la superficie del sustrato ferroso y, por su elevada dureza, mejoran propiedades del recubrimiento tales como dureza (valores hasta 22 Gpa) y resistencia al desgaste y la abrasión, con reducción en pérdidas de masa hasta la mitad de lo observado con cromo electrolítico sin tratar. La nitrocarburización de recubrimientos de cromo duro electrolítico aplicado sobre sustratos ferrosos ha sido menos estudiada. Sin embargo, además de las fases tipo CrxN obtenidas por nitruración, este tratamiento dúplex permite obtener fases adicionales de carburo de cromo (CrxCy) combinadas con nitruros de cromo, cuyo efecto permite mejorar propiedades como dureza superficial con valores hasta de 22 Gpa y resistencia a la corrosión por el sellado que las fases desarrolladas realizan en las microgrietas propias del cromo electrolítico. Con relación a los tratamientos de carburización sobre cromo duro electrolítico se encuentra únicamente un estudio efectuado en atmósfera controlada con benceno vaporizado, con formación de carburos CrxCy tanto superficialmente como en la interfaz cromo-acero. Se menciona este trabajo a título de información por su antigüedad y calidad en el reporte de caracterización. En los trabajos revisados se evidencia una dispersión en el establecimiento de parámetros como espesores de recubrimiento electrolítico de cromo (desde 2 hasta 200 mm) y tiempos de tratamiento (de 2 hasta 142 horas) y no se establece un criterio para su selección. Existe la oportunidad para el desarrollo experimental de tratamientos dúplex que combinen recubrimientos electrolíticos de cromo duro sobre sustratos ferrosos, con tratamientos termoquímicos de carburización en atmósfera gaseosa al vacío especialmente con utilización de acetileno, ya que además de ser un tratamiento no desarrollado puede permitir obtener compuestos tipo carburo de amplia aplicación en procesos de manufactura. Respecto de tratamientos dúplex con nitruración gaseosa se presenta también la oportunidad de validar el desarrollo de compuestos tipo CrxN en la manufactura industrial, ya que por lo general los estudios se han centrado en la evaluación de propiedades mediante diferentes técnicas de caracterización, sin que se encuentre una proyección hacia el campo de trabajo mencionado. Finalmente, con estos tratamientos dúplex se debe incrementar la vida útil de los recubrimientos de cromo (Cr(VI)), lo cual hace que su requerimiento en diversas aplicaciones disminuya y así también su impacto negativo en lo ambiental y en la salud pública.

Agradecimiento

Los autores agradecen el apoyo brindado por la Vicedecanatura de Extensión e Investigación de la Facultad de Ingeniería y por la Dirección de Investigación, Sede Bogotá, de la Universidad Nacional de Colombia.


Referencias

Ahn S.H., Choi, Y.S., Kim, J.G., Han, J.G., A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method., Surface and Coatings Technology, Vol. 150, N° 2-3, pp. 319-326, 2002

Ajikumar, P.K., Sankaran, A., Kamruddin, M., Nithya, R., Shankar, P., Dash, S., Tyagi, A.K., Raj, B., Morphology and growth aspects of Cr(N) phases on gas nitridation of electroplated chromium on AISI 316 LN stainless steel., Surface and Coatings Technology, Vol. 201, N° 1-2, 2006, pp. 102-107

Ajikumar, P., Kamruddin, M., Nithya, R., Shankar, P., Dash, S., Tyagi, A., Raj B., Surface nitridation of Ti and Cr in amonia atmosphere. Scripta Materialia, Vol. 51, N° 5, 2004, pp. 361-366

Arkharov, V. I., Konev, V. N., Study of reaction diffusion in "metal - compound gas" systems. 1., General picture of phenomenon, Fizika Metallov i Metallovedeniye, Vol. 9, N° 2, 1960, pp. 212-2I5. Translated by the Liaison Office, Technical Information Center, Wright-Patterson Air Force Base, Ohio (USA)

Arkharov, V.I., Yar-Mukhamedov, Sh.Kh., Pavlik, L.G., The effect of gas carburizing on the structure and properties of electrolytic chromium deposits., Materials Science, Vol. 8, N° 6, 1974, pp. 664-665

ASM Handbook Committee., ASM Handbook - Corrosion: Fundamentals, Testing and Protection., ASM International, Volume 13A, 2003, pp. 1985.

ASM Handbook Committee., ASM Handbook - Heat Treating, ASM International, Volume 4, 1991, pp. 608

ASM International., Surface Engineering for Corrosion and Wear Resistance, IOM Communications, 2001, Second printing, 2005, pp. 191

Basu, A., Dutta Majumdar, J., Ghosh Chowdhury, S., Ajikumar, P.K., Shankar, P., Tyagi, A.K., Baldev, R., Manna, I., Microstructural and texture studies of gas-nitrided Cr-coated low alloy high carbon steel., Surface and Coatings Technology, Vol. 201, N° 16-17, 2007, pp. 6985-6992

Batchelor, A.W., Lam, L.M., Chandrasekaran, M., Materials Degradation and its Control by Surface Engineering., Imperial College Press, 2nd Edition, 2002, pp. 2-4.

Buijnsters, J.G., Shankar, P., Sietsma, J., ter Meulen, J.J., Gas nitriding of chromium in NH3-N2 atmosphere., Materials Science and Engineering A, Vol. 341, N° 1-2, 2003, pp. 289-295

Celis, J.P., Drees, D., Huq, M.Z., Wu, P.Q., De Bonte, M., Hybrid Processes - A versatile technique to match process requirements and coating needs., Surface and Coatings Technology, Vol. 113, N° 1-2, 1999, pp. 165-181

Creus, J., Idrissi, H., Mazille, H., Sanchette, F., Jacquot, P., Improvement of the corrosion resistance of CrN coated steel by an interlayer., Surface and Coatings Technology, Vol. 107, N° 2-3, 1998, pp. 183-190

Dasgupta, A., Kuppusami, P., Vijayalakshmi, M., Raghunathan, V.S., Pulsed plasma nitriding of large components and coupons of chromed plated SS316LN stainless steel., Journal of Materials Science, Vol. 42, N° 20, 2007, pp. 8447-8453

Gawrónski, Z., Residual stresses in the surface layer of M2 steel after conventional and low pressure ('NITROVAC 79') nitriding processes., Surface and Coatings Technology, Vol. 124, N° 1, 2000, pp. 19-24

Grafën, W., Edenhofer, B., New developments in thermochemical diffusion processes., Surface and Coatings Technology, Vol. 200, N° 5-6, 2005, pp. 1830-1836

Groysman, A., Brodsky, N., Corrosion and Quality., Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement, Vol. 10, 2006, pp. 537-542

Groover, M.P., Fundamentos de Manufactura Moderna, 3ª Edición, McGraw-Hill, 2007, pp. 661

Han, D.-H., Hong, W.-H., Choi, H.S., Lee, J.J., Inductively coupled plasma nitriding of chromium electroplated AISI 316L stainless steel for PEMFC bipolar plate., International Journal of Hydrogen Energy, Vol. 34, N° 5, 2009, pp. 2387-2395

Hedaiat Mofidi, S.H., Sabour, A., Shahrabi, T., Aliof Khazrayie, M., Characteristics of nanocrystalline compound layer of electroplated hard chromium coatings after pulsed plasma electrolytic nitrocarburizing., International Journal of Modern Physics B, Vol. 22, N° 18-19, 2008, pp. 2995-3004

Hitoshi, I., Advanced Acetylene Vacuum Carburizing., IHI Engineering Rewiew, Vol. 38, N° 2, 2005, pp. 83-88

Karpov, L. P., Diffusion annealing of chromium electroplating., Metal Science and Heat Treatment, Vol. 43, No. 7-8, 2001, pp. 279-281

Kaufmann, M., Principles of Thermodynamics., Marcel Dekker Inc. New York, 2002, pp. 309.

Keshavarz Hedayati, M., Mahbouibi, F., Nickchi, T., Comparison of conventional and active screen plasma nitriding of hard chromium electroplated steel., Vacuum, Vol. 83, N° 8, 2009, pp. 1123-1128

Kessler, O.H., Hoffmann, F.T., Mayr, P., Combinations of coating and heat treating processes: establishing a system for combined processes and examples., Surface and Coating Technology. Vol. 108 - 109, N° 1-3, 1998, pp. 211-216.

Kim, D., Kim, M., Nam, D., Chang, D., Kwon, S.-C., Duplex coating for improvement of corrosion resistance in chromium deposit., Surface and Coatings Technology, Vol. 169-170, 2003, pp. 650-654

King, P.C., Reynoldson, R.W., Brownrigg, A., Long, J.M., Ammonia Dissociation in the Fluidised Bed Furnace. Materials Forum. Vol. 29, 2005, pp. 98-102

Krishtal, M.A., Tsepov, S.N., Properties of steels after High Temperature Vacuum Carburizing., Metal Science and Heat Treatment., Vol. 22, N° 6, 1980, pp. 379-385

Kuppusami, P., Dasgupta, A., Raghunathan, V.S., A new surface treatment by pulsed plasma nitriding of chromium plated austenitic stainless steel., ISIJ International, Vol. 42, N° 12, 2002, pp. 1457-1460

Lunarska, E., Nikiforowm K., Wierzchon, T., Ulbin-Poporska, I., Effect of plasma nitriding on hydrogen behavior in electroplated chromium coating., Surface and Coatings Technology, Vol. 145, N° 1-3, 2001, pp. 139-145

Matthews, A., Leyland, A., Hybrid Techniques in Surface Engineering., Surface and Coatings Technology, Vol. 71, N° 2, 1995, pp. 88-92

Menthe, E., Rie, K.-T., Plasma nitriding and plasma nitrocarburizing of electroplated hard chromium to increase the wear and the corrosion properties., Surface and Coatings Technology, Vol. 112, N° 1-3, 1999, pp. 217-220

Mittemeijer, E.J., Slycke, J.T., Chemical Potencials and Activities of Nitrogen and Carbon Imposed by Gaseous Nitriding and Carburising Atmospheres., Surface Engineering, Vol. 12, N° 2, 1996, pp. 152-162

Morral. J.E., Law, C.C. Vacuum carburizing of M50NiL., American Institute Of Aeronautics and Astronautics, 1990, Report 90-2287. SAE, ASME and ASEE, Joint Propulsion Conference, 26th, Orlando, FL, July 16-18, 1990

Nakhimov, D.M., Novikova A.Y., Residual Stresses after Carburizing and Nitrocementation., Metal Science and Heat Treatment, Vol. 10, N° 7, 1968, pp. 518-520

Nam, D.G., Lee, H.U., Thermal nitridation of chromium electroplated AISI 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plate., Journal of Powder Sources, Vol. 170, N° 2, 2007, pp. 268-274

Nam K.-S., Lee, K.-H., Kwon, S.-C., Lee, D.Y., Song, Y.-O., Improved wear and corrosion resistance of chromium (III) plating by oxynitrocarburising and steam oxidation., Materials Letters. Vol. 58, N° 27-28, 2004, pp. 3540 - 3544

Oleinik, J., Use of vacuum furnaces in heat treatment., Metal Science and Heat Treatment, Vol. 46, N° 11-12, 2004, pp. 554-558

Pina. J., Dias, A., Francois, M., Lebrun, J.L., Residual Stresses and Crystallographic Texture in Hard Chromium Electroplated Coatings., Surface and Coatings Technology, Vol. 96, N° 2-3, 1997, pp. 148-162

Poporska, I. Properties of Composite Layers Obtained by Combined Treatment., Metal Science and Heat Treatment, Vol. 47, N° 11-12, 2005, pp. 520-521

Rie, K.-T., Recent advances in plasma diffusion processes., Surface and Coatings Technology, Vol. 112, N° 1-3, 1999, pp. 56-62

Somers, A.J., Christiansen, T., Kinetics of Microstructure Evolution during Gaseous Thermochemical Surface Treatment., Journal of Phase Equilibrium and Diffusion, Vol. 26, N° 5, 2005, pp. 520-528

Torres-González, J., Benaben, P., Study of the influence of electrolyte chemical composition on the properties of chromium electrodeposits - Microstructure, crystallographic texture, residual stress and microhardness., Metal Finishing, Vol. 101, N° 6, 2003, pp. 107-116

Tsepov, S.N., Characteristic features of carburizing of steel during vacuum carburizing., Metal Science and Heat Treatment., Vol. 21, N° 8, 1979, pp. 633-638

Wang, L., Kim, D.S., Nam K.-S., Kim, M., Kwon, S.-C., Micro-structure of electroplated hard chromium coatings after plasma nitrocarburizing., Surface and Coatings Technology, Vol. 190, N° 2-3, 2005, pp. 151-154

Wang L., Nam, K.,S., Kwon, S.,C., Effect of plasma nitriding of electroplated chromium coatings on the corrosion protection C45 mild steel., Surface and Coatings Technology, Vol. 202, N° 2, 2007, pp. 203-207

Wang L., Nam, K.,S., Kwon, S.,C., Transmission electron microscopy study of plasma nitriding of electroplated chromium coating., Applied Surface Science, Vol. 207, N° 1-4, 2003, pp. 372-377

Weber, R.G., Vacuum carburizing and carbonitriding of wrought and P/M ferreous alloys., Heat Treatment of Metals, Vol. 9, N° 2, 1982, pp. 51-54

Whitten, J.L., Yang, H., Theory of chemisorption and reactions on metal surfaces., Surface Science Reports, Vol. 24, N° 3-4, 1996, pp. 55-124

Wierzchon, T., Structure and properties of multicomponent and composite layers produced by combined surface engineering methods., Surface and Coatings Technology, Vol. 180-181, 2004, pp. 458-464

Zhang, J.-G., Cong, P.-W., Wang, J.-H., New technology and application of vacuum carbonitriding., Heat Treatment of Metals, Vol. 31, N° 3, 2006, pp. 59-61

A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination

Héctor Cifuentes Aya1, Jhon Jairo Olaya Flórez2

1 Mechanical Engineering, Universidad Nacional de Colombia. Master of Education-University , Universidad Pedagógica Nacional. PhD Candidate inEngi-neering Science and Materials Technology, Universidad Nacional de Colombia. Assistant Professor, Universidad Nacional de Colombia. hcifuentesa@unal.edu.co

2 Metallurgical Engineer, Master in Materials and Processes, Universidad Nacional de Colombia. Doctor of Engineering, Universidad Nacional Autónoma de México. Associate Professor, Universidad Nacional de Colombia. jjolayaf@unal.edu.co


ABSTRACT

Duplex treatments have been developed to overcome the disadvantages presented by simple treatments to surfaces of different materials and have, in a combined and complementary way, the properties that each of these methods supplies individually. The difference between thermal expansion coefficients for Fe and Cr in hard chrome plating leads to crack formation in the deposited coat, through which corrosive agents migrate and reduce the system's integrity.

Direct deposition by physical vapour deposition (PVD), used for obtaining chromium nitride films on steel substrates, is limited by high production costs, the low thickness obtained and low resistance to corrosion due to the presence of micro pores. Some studies have combined an electroplated chromium with thermochemical treatments made in a controlled atmosphere or vacuum furnaces or by plasma. This kind of duplex treatment allows compounds such as CrxN, CrxCyN and CrxCy to be obtained from chemical and micro structural transformation of chromium with nitrogen and/or carbon, the sealing of cracks in the coating and increasing the magnitude of properties like hardness and density, improving wear and abrasion and corrosion resistance.

Keywords: Duplex treatment, electroplated coating, thermochemical treatment, nitriding, carburising, nitrocarburising, plasma


Received: January 19th 2011 Accepted: November 15th 2011


Introduction

The constituent elements of a machine, instrument or equipment are subject to different kinds of physical and/or chemical phenomena (corrosive environments, high temperatures, contact loads, fatigue) that can lead to the gradual loss of its functional integrity and the performance of the engineering system to which they belong, by degradation that usually starts on its surface (Batchelor et al., 2002; ASM, IOM Communications, 2005). Different surface treatments have been developed aimed at extending their useful life, availability and reliability. These treatments transform the surface by the intentional growth or addition of a new layer or by surface or subsurface modifications without intentional growth or increase in the size of the piece (ASM Handbook Vol. 4, 1991; Celis et al., 1999). As a result, such region having few molecular diameters or microstructure surface having different chemical composition and behaviour regarding substrate materials can work in different conditions concerning its use (Kaufmann, 2002). However, each individually-applied treatment can present a number of disadvantages affecting a layer's final performance. In the case of electrolytic hard chromium coatings, development and relief of residual efforts in the substrate/coating system (Nakhimov et al., 1968; Pina et al., 1997; Torres-Gonzalez and Benaben, 2003) during deposition produces microcracks in the deposited layer, having adverse effects on mechanical properties, friction coefficient with reduction in corrosion and wear resistance (Karpov, 2001; Kim et al., 2003; Nam et al., 2004; Wang et al., 2005; Sommers et al., 2005; Ajikumar et al., 2006), especially at temperatures higher than 623°K (Menthe and Rie, 1999).

On the other hand, the production of chromium nitride films (CrxN) on steel substrates by treatments like direct deposition (e.g. by PVD) is constrained by different aspects such as high production cost, low resistance to corrosion due to micropore presence (Creus et al., 1998), low thickness (about 5µm) and high residual compression stresses produced by difference regarding thermal expansion coefficients between CrxN compounds and steel substrates (1:6 ratio), especially in high temperature applications (Ajikumar et al., 2006; Buijnsters et al., 2003). Different types of combinations of surface treatments have been developed in recent years whose design must be characterised both by their economy and technical viability in making up a duplex treatment integrating the advantages of simple processes to produce surfaces having multicomponent layers and compound layers having higher physical-chemical features not made available by other processes (Matthews and Leyland, 1995; Kessler et al., 1998; Celis et al., 1999; Wierzchon, 2004).

This article reviews advances regarding surface treatments combining using electrolytic hard chromium coatings as a method of layer addition from a liquid phase on ferrous substrates (e.g. steels) with thermochemical treatment of nitriding, nitrocarburising and carburising producing chemical and microstructural changes in coatings from a gaseous phase or plasma. The duplex process was selected for its high industrial impact associated with increased chemical and mechanical property values in the surface layers of treated parts, thereby obtaining a combination of properties that allow complex loads (e.g. an increase in resistance because of fatigue-corrosion synergy) (Celis et al., 1999; Kessler et al., 1998). In particular, this article emphasises vacuum gaseous treatments due to the economic benefits obtained with hard layers because of the lower cost of these treatments compared to other techniques (e.g. PVD) (ASM - IOM Communications, 2005) and its impact on potential reduction in losses related to corrosion which can reach 5% of GDP in many countries (Groysman and Brodsky, 2006), i.e. $276 billion, in the U.S., equivalent to 3.1% of GDP for 2001 (ASM Handbook, Vol. 13, 2003).

Electrolytic hard chrome coatings combined with thermochemical treatments

Such duplex treatments start with the deposition of an electrolytic hard chrome coating on a ferrous metal substrate. The characteristics of the coating are selected according to hardness, wear resistance and the piece's required thickness, shape and size, substrate and dimensional specifications. The coated substrate is then subjected to chemical-mechanical surface cleaning (Groover, 2007) and then placed in a plasma chamber, in a low vacuum furnace or a controlled atmosphere furnace. This chamber may have been previously evacuated and purged with an inert gas like argon to minimise O2 partial pressure to prevent its corrosive effects. The thermochemical treatment selected (nitriding, nitrocarburising, carburising) is then carried out in a gaseous phase or by interaction with plasma. The pressure in the chamber has to be reduced to around 10-2 Pa to make the treatment, at a temperature whose magnitude is a function, regarding the type of precursor gas used. For example, the formation of composite type CrxN has been reported when T ≥ 873 °K for gaseous nitriding with NH3 (Ajikumar et al., 2006; Buijnsters et al., 2003; Basu et al., 2007). To avoid corrosion of the system so obtained at the end of the treatment, cooling takes place in the chamber or vacuum furnace in the presence of the precursor gases used. Thermochemical treatments allow atom species (N and/or C) to be obtained that subsequently diffuse on the surface of the hard chromium coating as a result of chemical kinetics (King et al., 2005; Pierson, 1999). The chemical adsorption of reactants by active sites on the surface of metallic substrate in heterogeneous processes (Whitten and Yang, 1996) leads to the start of dissociation of carrier gases present in the atmosphere and chemical potential and activities required for the treatment developing (Mittemeijer and Slycke, 1996) which subsequently, as a result of reactive diffusion, lead to the development of the desired phase (Arkharov and Konev, 1960), see Figure 1.

Electrolytic hard chromium coatings combined with nitriding thermochemical treatment

This treatment combines the deposition of a hard chromium electroplated coating on a ferrous substrate (as a method of adding layers from a liquid phase) with a nitriding thermochemical treatment as surface transformation method either by plasma nitriding or using controlled atmosphere or low vacuum furnaces (gaseous nitriding). Surface and subsurface layers of CrxN type compounds that seal the cracks of the electrolytic chromium and generate a barrier that prevents different corrosive agents reaching the surface of the substrate are obtained with this treatment.

Research into plasma nitriding (Menthe and Rie, 1999; Lunarska et al., 2001; Kuppusami et al., 2002; Wang et al., 2003; Poporska, 2005; Wang et al., 2007; Dasgupta et al., 2007; Han et al., 2009; Keshavarz et al., 2009) and gaseous nitriding on chromium substrates or electrolytically-applied chromium (Buijnsters et al., 2003; Ajikumar, 2004; Ajikumar et al, 2006; Nam and Lee, 2007) have studied the microstructure of the metallurgical system so obtained, the effect of production parameters (time and temperature) on corrosion resistance, wear resistance and hardness and their potential application in developments applicable, for example, to fuel cells. Nitriding transforms the chromium coating's chemical and microstructure as a result of the reaction between atomic nitrogen obtained by precursor gases dissociation (N2, NH3), either in plasma glow discharge or by heterogeneous reaction between the carrier gas and the surface of the metallic chromium coating in which these atoms diffuse.

The working temperature in gaseous nitriding can be lower than 1,273°K when NH3/Ar gas mixtures are used in different proportions (Buijnsters et al., 2003; Ajikumar et al, 2006, Basu et al., 2007; Nam and Lee, 2007). When T> 1,273°K, N2 can be used as atomic nitrogen precursor gas because this gas dissociates at T> 1,273°K (Grafen and Edenhofer, 2005). A multi-layer structure (Figure 2) can usually be obtained as a product of this reaction, consisting of the following.

1. An outer surface layer composed by chromium nitride CrxN, followed by a mixture of CrN/Cr2N and below these regions Cr2N/Cr (Ajikumar et al, 2006). It has been suggested (Matthews and Leyland, 1995) that the Cr2N sub-stoichiometric phase is the first to be formed and then the CrN stoichiometric phase. On the other hand, the presence of different phases in the compound layer is also a function of process temperature (between 873 and 973°K is obtained for Cr2N/Cr, between 973 and 1,323 °K for CrN/Cr2N and, if T> 1,323°K, Cr2N surface occurs by thermodynamic instability of the CrN phase) (Kuppusami et al., 2002);

2. An unmodified region consisting of electrolytic hard chromium coating;

3. An inner layer of CrxCy chromium carbides. Because of the treatment temperature, ferrous substrate decarburisation is produced, followed by carbon atom diffusion into the chromium coating in the coating-substrate interface. The formation of such compounds (Cr, Fe)7C3 (Poporska, 2005) is related to the free energy associated with the formation of chromium and iron carbides, whose change for 973°K is around 380 kJ/mol for Cr23C6, while this is - 5 kJ/mol for Fe3C formation. Hence the higher affinity of C for Cr than Fe and the chromium carbide stability so developed. On the other hand, Kim et al., (2003) have reported the formation of chromium carbides in the coating-substrate interface by transformation of the initial layer of amorphous chromium obtained in the electrolytic bath modified with organic compounds (formamide); and

4. An unmodified substrate.

Phases and their crystal orientations were determined by X-ray diffraction (XRD) using a X-PertPro Panalytical system in Bragg-Brentano mode, with Cuα monochromatic radiation of 1.540998 Å wavelength. Figure 3 presents the XRD results and the cross-section obtained by nitriding of a ferrous substrate (H13) electrolytically coated with hard chromium in low vacuum gaseous atmosphere, using N2 as nitrogen precursor gas (T: 1,323°K, t: 10 hours). Layers preferably consisting of Cr2N chromium nitrides and hardness having values up to 2,200 HV0,5 have been obtained.

The development of external chromium nitride (CrxN) layers and chromium carbide (CrxC) inner layers leads to increased ferrous substrate corrosion resistance (Han et al., 2009; Keshavarz et al., 2009). The formation of ceramic compounds and sealing by chromium nitrides and carbides in typical electrolytic coating cracks prevents corrosive agents penetrating the substrate and causing corrosiion (Menthe and Rie, 1999; Kim et al., 2003; Somers and Christiansen, 2005). Sub-surface CrxN type layers obtained from pre-coated steels with pure chromium and produced by PVD present better performance in corrosive environments because of their high-density columnar grain microstruc-ture and less intergranular porosity (Ahn et al., 2002). It also leads to an increase in wear and erosion resistance (ASM Handbook Vol 4, 1991; Celis et al., 1999; Somers and Christiansen, 2005) and maintains hardness values at high temperature (Pina et al., 1997; Ahn et al., 2002; Wang et al., 2005; Wang et al, 2007).

Electrolytic hard chromium coatings combined with thermochemical treatment or nitrocarburising

This treatment develops chemical and microstructural transformation of electrolytic chrome coatings by the diffusion of nitrogen and carbon atoms on its surface. The effect of plasma nitro-carburising on microstructure and electroplated chromium coatings properties involving mixtures of N2/H2/CH4 and NH3/CH4 (Wang et al., 2005) as carbon and nitrogen precursor gases have been studied (Menthe and Rie, 1999; Wang et al., 2005; Hedaiat Mofidi et al., 2008). From a structural point of view, layers of CrxN type chromium nitrides are obtained from dissociation of ammonia (NH3) and methane (CH4) (Wang et al., 2005) or N2 (Menthe and Rie, 1999). A carbon-enriched outer layer forms when treatment temperature is above 1,173°K, followed by CrxCy type chromium carbides (Cr3C2 and Cr7C3) (Menthe and Rie, 1999). An inner layer of chromium carbides is also formed in the substrate-coating interface, as in the combined process with nitriding; this is associated with steel decar-burisation followed by chromium coating diffusion and CrxCy type compound formation (Wang et al., 2005). The final microstructure depends on temperature and processing time (Menthe and Rie, 1999). Among the advantages associated with the application of this combined process is a great increase in hardness values, such as 1,450 HV (Nam et al., 2004) and 2,200 HK (Menthe and Rie, 1999; Rie, 1999), higher than those obtained with nitriding, as well as sealing microcracks typical of any electrolytic process, with a consequent increase in corrosion resistance (Menthe and Rie, 1999; Rie, 1999; Wang et al., 2005 ) due to the high values of layer thickness (Hedaiat Mofidi et al., 2008). It is also shows a decrease in wear rate associated with the presence of chromium carbides in the system as well as in nitriding.

Nam et al., (2004) have carried out studies aiming to improve electroplated Cr(III) resistance by oxy-nitrocarburisation in atmospheres consisting of a mixture of NH3/N2/CO2 gases. A Fe3O4/ Fe2O3/Fe4N compounds system without chromium nitride formation has been obtained as a result of the treatment; the author related this to the process's low energy. The results have shown that typical cracks in hard chrome plating increase in magnitude, instead of becoming sealed. However, compounds such as CrxCy are produced due to the addition of additives in the preparation of bath chromium. Similar results have also been developed by Kim (2003). Microstructure based on transition metal carbides produces increased system hardness and wear resistance. Although the coating cracks are not sealed, corrosion resistance is promoted by iron oxide FexOy and iron nitride Fe4N formation protecting the system.

Electrolytic hard chromium coatings combined with ther-mochemical treatment or carburisation

The study of the thermochemical treatment of vacuum carburis-ing shows significant progress, as demonstrated by developments by Basu et al., 2007, Zhang et al., 2006, Gawronski, 2000, Weber, 1982 and Krishtal et al., 1980. This process allows working with "oxygen-free" atmospheres and transforming alloyed steels whose chemical composition has strong oxide-forming elements (Morral and Law, 1990). Processes combining low vacuum with high-temperatures (Graf and Edenhofer, 2005) with less working time, better mechanical properties because of preventing intergranular corrosion, greater control of process generating uniformity and repeatability as a better control of layer depth and less environmental impact according to the carbon precursor gas used (preferably acetylene) have all been described (Tsepov, 1979; Kristhal and Tsepov, 1980; Hitoshi, 2005). The importance of this treatment at industrial level is evident from its development in the treatment of moulds, dies and tools (Oleinik, 2004) or technological innovations such as vacuum carburising with acetylene which allows removing impurities such as soot and tar with increased carburising power, process repeatability and higher quality surface. However, regarding this type of duplex treatment, there has only been one report by Arkharov et al., (1974) in which an electrolytic chromium coating applied to structural steel became transformed by means of a thermo-chemical treatment in a controlled gaseous atmosphere (mixture of vaporized benzene as carbon precursor agent with argon or hydrogen, at T = 1,323°K), obtaining CrxCy chromium carbides both on the surface of the electrolytic chromium coating and on the interface of this with the ferrous substrate by carbon effusion.

Table No. 1 gives a comparative summary of the results obtained with duplex treatments combining electrolytic hard chrome coatings on ferrous substrates with nitriding and nitrocarburising.

Conclusions

Several studies have shown that thermochemical treatment regarding electrolytic hard chromium coatings helps to improve their physicochemical, structural and microstructural properties. This improvement is due to surface and subsurface formation of nitride and / or chromium carbide phases. Major advances have been made with plasma nitriding, controlled atmosphere or low vacuum processes. While the development of CrxN phases starts at 600°C, its formation on chrome is best evidenced at T > 700° C. Cr2N + Cr phase appears at T > 700°C, then with 700°C > T < 1,000°C the CrN and Cr2N phases are formed and if T > 1,000°C, only one phase is formed, Cr2N, because of CrN's ther-modynamic instability. Transformed layer thicknesses vary between 1 and 20 µm and hardness can reach values up to 22 GPa in both treatments (plasma and gaseous atmosphere). Formation of CrxCy type compounds by carbon effusion to chromium at the interface with the substrate is presented.

These phases seal typical electroplating cracks and act as a barrier preventing corrosive agents' access to ferrous substrate surface and, because of their high intrinsic toughness, improve coating properties such as hardness (to 22 Gpa), wear resistance and abrasion. Nitrocarburising of electrolytic hard chrome coatings applied to ferrous substrates has been less studied. However, in addition to CrxN type phases obtained by nitriding, this duplex treatment allows obtaining additional chromium carbide (CrxCy) phases combined with chromium nitrides which allows improving properties such as surface hardness to values up to 22 GPa and resistance to corrosion by sealing typical electrolytic chromium coating micro-cracks. Only one study of controlled gaseous atmosphere with vaporised benzene has been carried out regarding carburising electrolytic hard chromium coatings on steel substrates. It reports CrxCy type carbide phase formation on both the surface and chromium-steel interface. This paper is referenced only for information because of its date of publication and the quality of the characterisation tests. The reviewed studies present evidence of dispersion in parameters such as electrolytic chromium coating thickness (from 2 to 200 mm) and treatment time (2 hours to 142 hours) without selection criteria. There is an opportunity to develop experimental duplex treatments combining electrolytic hard chromium coatings on ferrous substrates, with thermochemical treatment of gas carburising in gas vacuum atmosphere, especially with acetylene as precursor gas; as well as being an undeveloped treatment, it may lead to obtaining carbide-like compounds which are widely used in manufacturing. Regarding gas nitriding duplex treatments there is an opportunity to validate CrxN type compound development at industrial/manufacturing level since studies have been focused on evaluating properties by different characterisation techniques, without a projection into the afore mentioned field of work having been found. These duplex treatments should contribute towards increasing the lifetime of electrolytic chromium (Cr(VI)) coatings, decreasing its requirement in various applications due to its negative impact on the environment and public health.

Acknowledges

The authors wish to acknowledge the Universidad Nacional de Colombia's School of Engineering's Research and Extension unit and the university's research department in Bogotá for financing this research.


References

Ahn S.H., Choi, Y.S., Kim, J.G., Han, J.G., A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method., Surface and Coatings Technology, Vol. 150, N° 2-3, pp. 319-326, 2002

Ajikumar, P.K., Sankaran, A., Kamruddin, M., Nithya, R., Shankar, P., Dash, S., Tyagi, A.K., Raj, B., Morphology and growth aspects of Cr(N) phases on gas nitridation of electroplated chromium on AISI 316 LN stainless steel., Surface and Coatings Technology, Vol. 201, N° 1-2, 2006, pp. 102-107

Ajikumar, P., Kamruddin, M., Nithya, R., Shankar, P., Dash, S., Tyagi, A., Raj B., Surface nitridation of Ti and Cr in amonia atmosphere. Scripta Materialia, Vol. 51, N° 5, 2004, pp. 361-366

Arkharov, V. I., Konev, V. N., Study of reaction diffusion in "metal - compound gas" systems. 1., General picture of phenomenon, Fizika Metallov i Metallovedeniye, Vol. 9, N° 2, 1960, pp. 212-2I5. Translated by the Liaison Office, Technical Information Center, Wright-Patterson Air Force Base, Ohio (USA)

Arkharov, V.I., Yar-Mukhamedov, Sh.Kh., Pavlik, L.G., The effect of gas carburizing on the structure and properties of electrolytic chromium deposits., Materials Science, Vol. 8, N° 6, 1974, pp. 664-665

ASM Handbook Committee., ASM Handbook - Corrosion: Fundamentals, Testing and Protection., ASM International, Volume 13A, 2003, pp. 1985.

ASM Handbook Committee., ASM Handbook - Heat Treating, ASM International, Volume 4, 1991, pp. 608

ASM International., Surface Engineering for Corrosion and Wear Resistance, IOM Communications, 2001, Second printing, 2005, pp. 191

Basu, A., Dutta Majumdar, J., Ghosh Chowdhury, S., Ajikumar, P.K., Shankar, P., Tyagi, A.K., Baldev, R., Manna, I., Micro-structural and texture studies of gas-nitrided Cr-coated low alloy high carbon steel., Surface and Coatings Technology, Vol. 201, N° 16-17, 2007, pp. 6985-6992

Batchelor, A.W., Lam, L.M., Chandrasekaran, M., Materials Degradation and its Control by Surface Engineering., Imperial College Press, 2nd Edition, 2002, pp. 2-4.

Buijnsters, J.G., Shankar, P., Sietsma, J., ter Meulen, J.J., Gas nitriding of chromium in NH3-N2 atmosphere., Materials Science and Engineering A, Vol. 341, N° 1-2, 2003, pp. 289-295

Celis, J.P., Drees, D., Huq, M.Z., Wu, P.Q., De Bonte, M., Hybrid Processes - A versatile technique to match process requirements and coating needs., Surface and Coatings Technology, Vol. 113, N° 1-2, 1999, pp. 165-181

Creus, J., Idrissi, H., Mazille, H., Sanchette, F., Jacquot, P., Improvement of the corrosion resistance of CrN coated steel by an interlayer., Surface and Coatings Technology, Vol. 107, N° 2-3, 1998, pp. 183-190

Dasgupta, A., Kuppusami, P., Vijayalakshmi, M., Raghunathan, V.S., Pulsed plasma nitriding of large components and coupons of chromed plated SS316LN stainless steel., Journal of Materials Science, Vol. 42, N° 20, 2007, pp. 8447-8453

Gawrónski, Z., Residual stresses in the surface layer of M2 steel after conventional and low pressure ('NITROVAC 79') nitriding processes., Surface and Coatings Technology, Vol. 124, N° 1, 2000, pp. 19-24

Grafën, W., Edenhofer, B., New developments in thermochemical diffusion processes., Surface and Coatings Technology, Vol. 200, N° 5-6, 2005, pp. 1830-1836

Groysman, A., Brodsky, N., Corrosion and Quality., Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement, Vol. 10, 2006, pp. 537-542

Groover, M.P., Fundamentos de Manufactura Moderna, 3ª Edición, McGraw-Hill, 2007, pp. 661

Han, D.-H., Hong, W.-H., Choi, H.S., Lee, J.J., Inductively coupled plasma nitriding of chromium electroplated AISI 316L stainless steel for PEMFC bipolar plate., International Journal of Hydrogen Energy, Vol. 34, N° 5, 2009, pp. 2387-2395

Hedaiat Mofidi, S.H., Sabour, A., Shahrabi, T., Aliof Khazrayie, M., Characteristics of nanocrystalline compound layer of electroplated hard chromium coatings after pulsed plasma electrolytic nitrocarburizing., International Journal of Modern Physics B, Vol. 22, N° 18-19, 2008, pp. 2995-3004

Hitoshi, I., Advanced Acetylene Vacuum Carburizing., IHI Engineering Rewiew, Vol. 38, N° 2, 2005, pp. 83-88

Karpov, L. P., Diffusion annealing of chromium electroplating., Metal Science and Heat Treatment, Vol. 43, No. 7-8, 2001, pp. 279-281

Kaufmann, M., Principles of Thermodynamics., Marcel Dekker Inc. New York, 2002, pp. 309.

Keshavarz Hedayati, M., Mahbouibi, F., Nickchi, T., Comparison of conventional and active screen plasma nitriding of hard chromium electroplated steel., Vacuum, Vol. 83, N° 8, 2009, pp. 1123-1128

Kessler, O.H., Hoffmann, F.T., Mayr, P., Combinations of coating and heat treating processes: establishing a system for combined processes and examples., Surface and Coating Technology. Vol. 108 - 109, N° 1-3, 1998, pp. 211-216.

Kim, D., Kim, M., Nam, D., Chang, D., Kwon, S.-C., Duplex coating for improvement of corrosion resistance in chromium deposit., Surface and Coatings Technology, Vol. 169-170, 2003, pp. 650-654

King, P.C., Reynoldson, R.W., Brownrigg, A., Long, J.M., Ammonia Dissociation in the Fluidised Bed Furnace. Materials Forum. Vol. 29, 2005, pp. 98-102

Krishtal, M.A., Tsepov, S.N., Properties of steels after High Temperature Vacuum Carburizing., Metal Science and Heat Treatment., Vol. 22, N° 6, 1980, pp. 379-385

Kuppusami, P., Dasgupta, A., Raghunathan, V.S., A new surface treatment by pulsed plasma nitriding of chromium plated austenitic stainless steel., ISIJ International, Vol. 42, N° 12, 2002, pp. 1457-1460

Lunarska, E., Nikiforowm K., Wierzchon, T., Ulbin-Poporska, I., Effect of plasma nitriding on hydrogen behavior in electroplated chromium coating., Surface and Coatings Technology, Vol. 145, N° 1-3, 2001, pp. 139-145

Matthews, A., Leyland, A., Hybrid Techniques in Surface Engineering., Surface and Coatings Technology, Vol. 71, N° 2, 1995, pp. 88-92

Menthe, E., Rie, K.-T., Plasma nitriding and plasma nitrocarburizing of electroplated hard chromium to increase the wear and the corrosion properties., Surface and Coatings Technology, Vol. 112, N° 1-3, 1999, pp. 217-220

Mittemeijer, E.J., Slycke, J.T., Chemical Potencials and Activities of Nitrogen and Carbon Imposed by Gaseous Nitriding and Carburising Atmospheres., Surface Engineering, Vol. 12, N° 2, 1996, pp. 152-162

Morral. J.E., Law, C.C. Vacuum carburizing of M50NiL., American Institute Of Aeronautics and Astronautics, 1990, Report 90-2287. SAE, ASME and ASEE, Joint Propulsion Conference, 26th, Orlando, FL, July 16-18, 1990

Nakhimov, D.M., Novikova A.Y., Residual Stresses after Carburizing and Nitrocementation., Metal Science and Heat Treatment, Vol. 10, N° 7, 1968, pp. 518-520

Nam, D.G., Lee, H.U., Thermal nitridation of chromium electroplated AISI 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plate., Journal of Powder Sources, Vol. 170, N° 2, 2007, pp. 268-274

Nam K.-S., Lee, K.-H., Kwon, S.-C., Lee, D.Y., Song, Y.-O., Improved wear and corrosion resistance of chromium (III) plating by oxynitrocarburising and steam oxidation., Materials Letters. Vol. 58, N° 27-28, 2004, pp. 3540 - 3544

Oleinik, J., Use of vacuum furnaces in heat treatment., Metal Science and Heat Treatment, Vol. 46, N° 11-12, 2004, pp. 554-558

Pina. J., Dias, A., Francois, M., Lebrun, J.L., Residual Stresses and Crystallographic Texture in Hard Chromium Electroplated Coatings., Surface and Coatings Technology, Vol. 96, N° 2-3, 1997, pp. 148-162

Poporska, I. Properties of Composite Layers Obtained by Combined Treatment., Metal Science and Heat Treatment, Vol. 47, N° 11-12, 2005, pp. 520-521

Rie, K.-T., Recent advances in plasma diffusion processes., Surface and Coatings Technology, Vol. 112, N° 1-3, 1999, pp. 56-62

Somers, A.J., Christiansen, T., Kinetics of Microstructure Evolution during Gaseous Thermochemical Surface Treatment., Journal of Phase Equilibrium and Diffusion, Vol. 26, N° 5, 2005, pp. 520-528

Torres-González, J., Benaben, P., Study of the influence of electrolyte chemical composition on the properties of chromium electrodeposits - Microstructure, crystallographic texture, residual stress and microhardness., Metal Finishing, Vol. 101, N° 6, 2003, pp. 107-116

Tsepov, S.N., Characteristic features of carburizing of steel during vacuum carburizing., Metal Science and Heat Treatment., Vol. 21, N° 8, 1979, pp. 633-638

Wang, L., Kim, D.S., Nam K.-S., Kim, M., Kwon, S.-C., Micro-structure of electroplated hard chromium coatings after plasma nitrocarburizing., Surface and Coatings Technology, Vol. 190, N° 2-3, 2005, pp. 151-154

Wang L., Nam, K.,S., Kwon, S.,C., Effect of plasma nitriding of electroplated chromium coatings on the corrosion protection C45 mild steel., Surface and Coatings Technology, Vol. 202, N° 2, 2007, pp. 203-207

Wang L., Nam, K.,S., Kwon, S.,C., Transmission electron microscopy study of plasma nitriding of electroplated chromium coating., Applied Surface Science, Vol. 207, N° 1-4, 2003, pp. 372-377

Weber, R.G., Vacuum carburizing and carbonitriding of wrought and P/M ferreous alloys., Heat Treatment of Metals, Vol. 9, N° 2, 1982, pp. 51-54

Whitten, J.L., Yang, H., Theory of chemisorption and reactions on metal surfaces., Surface Science Reports, Vol. 24, N° 3-4, 1996, pp. 55-124

Wierzchon, T., Structure and properties of multicomponent and composite layers produced by combined surface engineering methods., Surface and Coatings Technology, Vol. 180-181, 2004, pp. 458-464

Zhang, J.-G., Cong, P.-W., Wang, J.-H., New technology and application of vacuum carbonitriding., Heat Treatment of Metals, Vol. 31, N° 3, 2006, pp. 59-61

References

Ahn S.H., Choi, Y.S., Kim, J.G., Han, J.G., A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method., Surface and Coatings Technology, Vol. 150, N° 2-3, pp. 319-326, 2002. DOI: https://doi.org/10.1016/S0257-8972(01)01529-8

Ajikumar, P.K., Sankaran, A., Kamruddin, M., Nithya, R., Shankar, P., Dash, S., Tyagi, A.K., Raj, B., Morphology and growth aspects of Cr(N) phases on gas nitridation of electroplated chromium on AISI 316 LN stainless steel., Surface and Coatings Technology, Vol. 201, N° 1-2, 2006, pp. 102-107. DOI: https://doi.org/10.1016/j.surfcoat.2005.10.043

Ajikumar, P., Kamruddin, M., Nithya, R., Shankar, P., Dash, S., Tyagi, A., Raj B., Surface nitridation of Ti and Cr in amonia atmosphere. Scripta Materialia, Vol. 51, N° 5, 2004, pp. 361-366. DOI: https://doi.org/10.1016/j.scriptamat.2004.05.024

Arkharov, V. I., Konev, V. N., Study of reaction diffusion in "metal - compound gas" systems. 1., General picture of phenomenon, Fizika Metallov i Metallovedeniye, Vol. 9, N° 2, 1960, pp. 212-2I5. Translated by the Liaison Office, Technical Information Center, Wright-Patterson Air Force Base, Ohio (USA).

Arkharov, V.I., Yar-Mukhamedov, Sh.Kh., Pavlik, L.G., The effect of gas carburizing on the structure and properties of electrolytic chromium deposits., Materials Science, Vol. 8, N° 6, 1974, pp. 664-665 DOI: https://doi.org/10.1007/BF00722918

ASM Handbook Committee., ASM Handbook - Corrosion: Fundamentals, Testing and Protection., ASM International, Volume 13A, 2003, pp. 1985.

ASM Handbook Committee., ASM Handbook - Heat Treating, ASM International, Volume 4, 1991, pp. 608.

ASM International., Surface Engineering for Corrosion and Wear Resistance, IOM Communications, 2001, Second printing, 2005, pp. 191.

Basu, A., Dutta Majumdar, J., Ghosh Chowdhury, S., Ajikumar, P.K., Shankar, P., Tyagi, A.K., Baldev, R., Manna, I., Microstructural and texture studies of gas-nitrided Cr-coated low alloy high carbon steel., Surface and Coatings Technology, Vol. 201, N° 16-17, 2007, pp. 6985-6992. DOI: https://doi.org/10.1016/j.surfcoat.2007.01.004

Batchelor, A.W., Lam, L.M., Chandrasekaran, M., Materials Degradation and its Control by Surface Engineering., Imperial College Press, 2nd Edition, 2002, pp. 2-4. DOI: https://doi.org/10.1142/p271

Buijnsters, J.G., Shankar, P., Sietsma, J., ter Meulen, J.J., Gas nitriding of chromium in NH3-N2 atmosphere., Materials Science and Engineering A, Vol. 341, N° 1-2, 2003, pp. 289-295. DOI: https://doi.org/10.1016/S0921-5093(02)00231-9

Celis, J.P., Drees, D., Huq, M.Z., Wu, P.Q., De Bonte, M., Hybrid Processes - A versatile technique to match process requirements and coating needs., Surface and Coatings Technology, Vol. 113, N° 1-2, 1999, pp. 165-181. DOI: https://doi.org/10.1016/S0257-8972(98)00836-6

Creus, J., Idrissi, H., Mazille, H., Sanchette, F., Jacquot, P., Improvement of the corrosion resistance of CrN coated steel by an interlayer., Surface and Coatings Technology, Vol. 107, N° 2-3, 1998, pp. 183-190. DOI: https://doi.org/10.1016/S0257-8972(98)00646-X

Dasgupta, A., Kuppusami, P., Vijayalakshmi, M., Raghunathan, V.S., Pulsed plasma nitriding of large components and coupons of chromed plated SS316LN stainless steel., Journal of Materials Science, Vol. 42, N° 20, 2007, pp. 8447-8453. DOI: https://doi.org/10.1007/s10853-007-1783-7

Gawrónski, Z., Residual stresses in the surface layer of M2 steel after conventional and low pressure ('NITROVAC 79') nitriding processes., Surface and Coatings Technology, Vol. 124, N° 1, 2000, pp. 19-24. DOI: https://doi.org/10.1016/S0257-8972(99)00620-9

Grafën, W., Edenhofer, B., New developments in thermochemical diffusion processes., Surface and Coatings Technology, Vol. 200, N° 5-6, 2005, pp. 1830-1836. DOI: https://doi.org/10.1016/j.surfcoat.2005.08.107

Groysman, A., Brodsky, N., Corrosion and Quality., Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement, Vol. 10, 2006, pp. 537-542 DOI: https://doi.org/10.1007/s00769-005-0034-3

Groover, M.P., Fundamentos de Manufactura Moderna, 3ª Edición, McGraw-Hill, 2007, pp. 661

Han, D.-H., Hong, W.-H., Choi, H.S., Lee, J.J., Inductively coupled plasma nitriding of chromium electroplated AISI 316L stainless steel for PEMFC bipolar plate., International Journal of Hydrogen Energy, Vol. 34, N° 5, 2009, pp. 2387-2395 DOI: https://doi.org/10.1016/j.ijhydene.2009.01.004

Hedaiat Mofidi, S.H., Sabour, A., Shahrabi, T., Aliof Khazrayie, M., Characteristics of nanocrystalline compound layer of electroplated hard chromium coatings after pulsed plasma electrolytic nitrocarburizing., International Journal of Modern Physics B, Vol. 22, N° 18-19, 2008, pp. 2995-3004 DOI: https://doi.org/10.1142/S0217979208047857

Hitoshi, I., Advanced Acetylene Vacuum Carburizing., IHI Engineering Review, Vol. 38, N° 2, 2005, pp. 83-88.

Karpov, L. P., Diffusion annealing of chromium electroplating., Metal Science and Heat Treatment, Vol. 43, No. 7-8, 2001, pp. 279-281. DOI: https://doi.org/10.1023/A:1012781421035

Kaufmann, M., Principles of Thermodynamics., Marcel Dekker Inc. New York, 2002, pp. 309.

Keshavarz Hedayati, M., Mahbouibi, F., Nickchi, T., Comparison of conventional and active screen plasma nitriding of hard chromium electroplated steel., Vacuum, Vol. 83, N° 8, 2009, pp. 1123-1128. DOI: https://doi.org/10.1016/j.vacuum.2009.02.005

Kessler, O.H., Hoffmann, F.T., Mayr, P., Combinations of coating and heat treating processes: establishing a system for combined processes and examples., Surface and Coating Technology. Vol. 108 - 109, N° 1-3, 1998, pp. 211-216. DOI: https://doi.org/10.1016/S0257-8972(98)00558-1

Kim, D., Kim, M., Nam, D., Chang, D., Kwon, S.-C., Duplex coating for improvement of corrosion resistance in chromium deposit., Surface and Coatings Technology, Vol. 169-170, 2003, pp. 650-654. DOI: https://doi.org/10.1016/S0257-8972(03)00107-5

King, P.C., Reynoldson, R.W., Brownrigg, A., Long, J.M., Ammonia Dissociation in the Fluidised Bed Furnace. Materials Forum. Vol. 29, 2005, pp. 98-102.

Krishtal, M.A., Tsepov, S.N., Properties of steels after High Temperature Vacuum Carburizing., Metal Science and Heat Treatment., Vol. 22, N° 6, 1980, pp. 379-385. DOI: https://doi.org/10.1007/BF00693636

Kuppusami, P., Dasgupta, A., Raghunathan, V.S., A new surface treatment by pulsed plasma nitriding of chromium plated austenitic stainless steel., ISIJ International, Vol. 42, N° 12, 2002, pp. 1457-1460. DOI: https://doi.org/10.2355/isijinternational.42.1457

Lunarska, E., Nikiforowm K., Wierzchon, T., Ulbin-Poporska, I., Effect of plasma nitriding on hydrogen behavior in electroplated chromium coating., Surface and Coatings Technology, Vol. 145, N° 1-3, 2001, pp. 139-145. DOI: https://doi.org/10.1016/S0257-8972(01)01287-7

Matthews, A., Leyland, A., Hybrid Techniques in Surface Engineering., Surface and Coatings Technology, Vol. 71, N° 2, 1995, pp. 88-92. DOI: https://doi.org/10.1016/0257-8972(94)01004-3

Menthe, E., Rie, K.-T., Plasma nitriding and plasma nitrocarburizing of electroplated hard chromium to increase the wear and the corrosion properties., Surface and Coatings Technology, Vol. 112, N° 1-3, 1999, pp. 217-220 DOI: https://doi.org/10.1016/S0257-8972(98)00793-2

Mittemeijer, E.J., Slycke, J.T., Chemical Potencials and Activities of Nitrogen and Carbon Imposed by Gaseous Nitriding and Carburising Atmospheres., Surface Engineering, Vol. 12, N° 2, 1996, pp. 152-162. DOI: https://doi.org/10.1179/sur.1996.12.2.152

Morral. J.E., Law, C.C. Vacuum carburizing of M50NiL., American Institute of Aeronautics and Astronautics, 1990, Report 90-2287. SAE, ASME and ASEE, Joint Propulsion Conference, 26th, Orlando, FL, July 16-18, 1990. DOI: https://doi.org/10.2514/6.1990-2287

Nakhimov, D.M., Novikova A.Y., Residual Stresses after Carburizing and Nitrocementation., Metal Science and Heat Treatment, Vol. 10, N° 7, 1968, pp. 518-520. DOI: https://doi.org/10.1007/BF00654354

Nam, D.G., Lee, H.U., Thermal nitridation of chromium electroplated AISI 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plate., Journal of Powder Sources, Vol. 170, N° 2, 2007, pp. 268-274. DOI: https://doi.org/10.1016/j.jpowsour.2007.04.054

Nam K.-S., Lee, K.-H., Kwon, S.-C., Lee, D.Y., Song, Y.-O., Improved wear and corrosion resistance of chromium (III) plating by oxynitrocarburising and steam oxidation., Materials Letters. Vol. 58, N° 27-28, 2004, pp. 3540 – 3544. DOI: https://doi.org/10.1016/j.matlet.2004.06.038

Oleinik, J., Use of vacuum furnaces in heat treatment., Metal Science and Heat Treatment, Vol. 46, N° 11-12, 2004, pp. 554-558. DOI: https://doi.org/10.1007/s11041-005-0018-2

Pina. J., Dias, A., Francois, M., Lebrun, J.L., Residual Stresses and Crystallographic Texture in Hard Chromium Electroplated Coatings., Surface and Coatings Technology, Vol. 96, N° 2-3, 1997, pp. 148-162. DOI: https://doi.org/10.1016/S0257-8972(97)00075-3

Poporska, I. Properties of Composite Layers Obtained by Combined Treatment., Metal Science and Heat Treatment, Vol. 47, N° 11-12, 2005, pp. 520-521. DOI: https://doi.org/10.1007/s11041-006-0024-z

Rie, K.-T., Recent advances in plasma diffusion processes., Surface and Coatings Technology, Vol. 112, N° 1-3, 1999, pp. 56-62. DOI: https://doi.org/10.1016/S0257-8972(98)00747-6

Somers, A.J., Christiansen, T., Kinetics of Microstructure Evolution during Gaseous Thermochemical Surface Treatment., Journal of Phase Equilibrium and Diffusion, Vol. 26, N° 5, 2005, pp. 520-528. DOI: https://doi.org/10.1361/154770305X66664

Torres-González, J., Benaben, P., Study of the influence of electrolyte chemical composition on the properties of chromium electrodeposits - Microstructure, crystallographic texture, residual stress and microhardness., Metal Finishing, Vol. 101, N° 6, 2003, pp. 107-116. DOI: https://doi.org/10.1016/S0026-0576(03)80441-5

Tsepov, S.N., Characteristic features of carburizing of steel during vacuum carburizing., Metal Science and Heat Treatment., Vol. 21, N° 8, 1979, pp. 633-638. DOI: https://doi.org/10.1007/BF00703611

Wang, L., Kim, D.S., Nam K.-S., Kim, M., Kwon, S.-C., Micro-structure of electroplated hard chromium coatings after plasma nitrocarburizing., Surface and Coatings Technology, Vol. 190, N° 2-3, 2005, pp. 151-154. DOI: https://doi.org/10.1016/j.surfcoat.2004.08.213

Wang L., Nam, K., S., Kwon, S., C., Effect of plasma nitriding of electroplated chromium coatings on the corrosion protection C45 mild steel., Surface and Coatings Technology, Vol. 202, N° 2, 2007, pp. 203-207. DOI: https://doi.org/10.1016/j.surfcoat.2007.05.027

Wang L., Nam, K., S., Kwon, S., C., Transmission electron microscopy study of plasma nitriding of electroplated chromium coating., Applied Surface Science, Vol. 207, N° 1-4, 2003, pp. 372-377. DOI: https://doi.org/10.1016/S0169-4332(03)00007-2

Weber, R.G., Vacuum carburizing and carbonitriding of wrought and P/M ferreous alloys., Heat Treatment of Metals, Vol. 9, N° 2, 1982, pp. 51-54.

Whitten, J.L., Yang, H., Theory of chemisorption and reactions on metal surfaces., Surface Science Reports, Vol. 24, N° 3-4, 1996, pp. 55-124. DOI: https://doi.org/10.1016/0167-5729(96)80004-5

Wierzchon, T., Structure and properties of multicomponent and composite layers produced by combined surface engineering methods., Surface and Coatings Technology, Vol. 180-181, 2004, pp. 458-464. DOI: https://doi.org/10.1016/j.surfcoat.2003.10.090

Zhang, J.-G., Cong, P.-W., Wang, J.-H., New technology and application of vacuum carbonitriding., Heat Treatment of Metals, Vol. 31, N° 3, 2006, pp. 59-61.

How to Cite

APA

Cifuentes Aya, H. and Olaya Flórez, J. J. (2011). A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination. Ingeniería e Investigación, 31(3), 6–16. https://doi.org/10.15446/ing.investig.v31n3.26373

ACM

[1]
Cifuentes Aya, H. and Olaya Flórez, J.J. 2011. A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination. Ingeniería e Investigación. 31, 3 (Sep. 2011), 6–16. DOI:https://doi.org/10.15446/ing.investig.v31n3.26373.

ACS

(1)
Cifuentes Aya, H.; Olaya Flórez, J. J. A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination. Ing. Inv. 2011, 31, 6-16.

ABNT

CIFUENTES AYA, H.; OLAYA FLÓREZ, J. J. A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination. Ingeniería e Investigación, [S. l.], v. 31, n. 3, p. 6–16, 2011. DOI: 10.15446/ing.investig.v31n3.26373. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/26373. Acesso em: 19 apr. 2024.

Chicago

Cifuentes Aya, Héctor, and Jhon Jairo Olaya Flórez. 2011. “A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination”. Ingeniería E Investigación 31 (3):6-16. https://doi.org/10.15446/ing.investig.v31n3.26373.

Harvard

Cifuentes Aya, H. and Olaya Flórez, J. J. (2011) “A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination”, Ingeniería e Investigación, 31(3), pp. 6–16. doi: 10.15446/ing.investig.v31n3.26373.

IEEE

[1]
H. Cifuentes Aya and J. J. Olaya Flórez, “A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination”, Ing. Inv., vol. 31, no. 3, pp. 6–16, Sep. 2011.

MLA

Cifuentes Aya, H., and J. J. Olaya Flórez. “A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination”. Ingeniería e Investigación, vol. 31, no. 3, Sept. 2011, pp. 6-16, doi:10.15446/ing.investig.v31n3.26373.

Turabian

Cifuentes Aya, Héctor, and Jhon Jairo Olaya Flórez. “A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination”. Ingeniería e Investigación 31, no. 3 (September 1, 2011): 6–16. Accessed April 19, 2024. https://revistas.unal.edu.co/index.php/ingeinv/article/view/26373.

Vancouver

1.
Cifuentes Aya H, Olaya Flórez JJ. A review of producing hard coatings by means of duplex treatments using an electroplated coating-thermochemical treatment combination. Ing. Inv. [Internet]. 2011 Sep. 1 [cited 2024 Apr. 19];31(3):6-16. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/26373

Download Citation

CrossRef Cited-by

CrossRef citations1

1. S. Mokhtara, M. Zidani, M.M. Alim, S. Mechachti, S. Messaoudi, L. Mebarki. (2023). Effect of nitriding nitrogen pressure on the structural, morphological, mechanical and tribological properties of plasma nitrided hard chromium electroplated layer. Transactions of the IMF, 101(5), p.252. https://doi.org/10.1080/00202967.2023.2223052.

Dimensions

PlumX

Article abstract page views

446

Downloads

Download data is not yet available.