Published

2023-03-12

Strapping Spiral Ties for Short Tie-Columns in Confined Masonry Walls Using a Micro-Numerical Model

Estribos flejados en espiral para castillos cortos de paredes de mampostería confinada mediante el empleo de micro modelación numérica

DOI:

https://doi.org/10.15446/ing.investig.97253

Keywords:

Spiral ties, Strapping ties, Short tie-columns, Compressive strength (en)
Estribos en espiral, Estribos flejados, Castillos cortos, Resistencia a la compresión (es)

Downloads

Authors

Many dwellings in the world are built using confined masonry walls. Confinement is achieved by tie-columns and bond beams of reinforced concrete. These tie columns are traditionally reinforced by using closed-loop ties. In this paper, a new type of ties for tie columns is presented: strapping spiral ties. These strapping ties are compared against traditional ties by a three-dimensional micro-numerical model and the experimental behavior of short tie columns. This study resulted in an improvement in the compressive strength, in the degree of confinement of the concrete, and in the efficiency of tie-columns with strapping spiral ties. In addition, an increase in the stiffness at the unloading stage was also obtained.

Algunas de las viviendas en el mundo se construyen con muros confinados de mampostería. El confinamiento se logra mediante castillos y dalas de concreto reforzado. Estos castillos se refuerzan tradicionalmente mediante el uso de estribos tradicionales cerrados. En este trabajo se presenta un nuevo tipo de estribos para castillos: estribos flejados y en espiral. Estos estribos flejados se comparan con los estribos tradicionales mediante un modelo micro numérico tridimensional y el comportamiento experimental de castillos cortos. Este estudio resultó en una mejora en la resistencia a la compresión, en el grado de confinamiento del concreto y en la eficiencia de los castillos con estribos en espiral. Además, también se obtuvo un aumento de la rigidez en la etapa de descarga.

References

Abaqus (2016). Analysis user's manual. Documentation. Dassault Systemes Simulia Corporation.

Aceros Titán Company (2016). Manufacture and distribution of steel products for the metal-mechanical and construction industries. https://www.acerostitan.com/certifications

ACI International (2013). ACI-530. Building code requirements and specification for masonry structures and companion commentaries TMS 602-13/4CI 530.1-13/ASCE 6-13 (pp. S-1-S-85). https://www.concrete.org/store/productdetail.aspx?ItemID=53013&Language=English&Units=US_Units

ACI International (2014). ACI-318. Building code requirements for structural concrete. https://civilshare.files.wordpress.com/2016/07/aci_318s_14_en_espanol.pdf

Arslan, G. (2012). Diagonal tension failure of rc beams without stirrups. Journal of Civil Engineering and Management, 18(2), 217-226. https://10.3846/13923730.2012.671264

ASTM International (2009). ASTM-E8/E8M-09. Standard test methods for tension testing of metallic materials. https://cypma.mx/mecanicas/astm-e8/ .

ASTM International (2015). ASTM-C617/C617M-15. Standard practice for capping cylindrical concrete specimens. https://www.astm.org/c0617_c0617m-15.html

ASTM International (2018). ASTM-C39/C39M-18. Test method for compressive strength of cylindrical concrete specimens. https://www.astm.org/c0039_c0039m-18.html

ASTM International (2019). ASTM-A370. Standard test methods and definitions for mechanical testing of steel products. https://www.astm.org/a0370-21.html

Azam, R., El-Sayed, A. K., and Soudki, K. (2016). Behaviour of reinforced concrete beams without stirrups subjected to steel reinforcement corrosion. Journal of Civil Engineering and Management, 22(2), 146-153. https://10.3846/13923730.2014.897979

Caminero, M. A., and Montans, F. J. (2010). Anisotropic elastoplasticity model based on the Hill yield criterion with mixed hardening: Implicit stress integration algorithm and consistent tangent modulus [Conference paper]. XVIII National Congress of Mechanical Engineering, Ciudad Real, Spain. http://toc.proceedings.com/11510webtoc.pdf

Colajanni, P., La Mendola, L., Mancini, G., Recupero, A., and Spinella, N. (2014). Shear capacity in concrete beams reinforced by stirrups with two different inclinations. Engineering Structures, 81, 444-453. https://doi.org/10.1016/j.engstruct.2014.10.011

De Corte, W., and Boel, V. (2013). Effectiveness of spirally shaped stirrups in reinforced concrete beams. Engineering Structures, 52, 667-675. https://doi.org/10.1016/j.engstruct.2013.03.032

Dong, H.-L., Wang, D., Wang, Z., and Sun, Y. (2018). Axial compressive behavior of square concrete columns reinforced with innovative closed-type winding GFRP stirrups. Composite Structures, 192, 115-125. https://doi.org/10.1016/j.compstruct.2018.02.092

Du, M., Jin, L., Du, X., and Li, D. (2017). Size effect tests of stocky reinforced concrete columns confined by stirrups. Structural Concrete, 18(3), 454-465. https://doi.org/10.1002/suco.201600074

Fei, Z., Qiang, Z., Fenglai, W., and Xu, Y. (2017). Spatial variability and sensitivity analysis on the compressive strength of holow concrete block masonry wallettes. Construction and Building Materials, 140(129-138), 129-138. http://dx.doi.org/10.1016/j.conbuildmat.2017.02.099

Grgić, N., Radnić, J., Matešan, D., and Banović, I. (2017). Stirrups effect on the behavior of concrete columns during an earthquake. Materialwissenschaft und Werkstofftechnik, 48(5), 406-419. https://doi.org/10.1002/mawe.201700014

Gribniak, V., Rimkus, A., Torres, L., and Jakstaite, R. (2017). Deformation analysis of reinforced concrete ties: Representative geometry. Structural Concrete, 18(4), 634-647. https://doi.org/10.1002/suco.201600105

Hong, K.-N., Han, S.-H., and Yi, S.-T. (2006). High-strength concrete columns confined by low-volumetric-ratio lateral ties. Engineering Structures, 28(9), 1346-1353. https://doi.org/10.1016/j.engstruct.2006.01.010

INEGI (n.d.). National Institute of Statistics and Geography. https://www.inegi.org.mx/default.html

Lee, J., and Gregory, L. F. (1998). Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics,, 124(8), 892-900. http://doi:10.1061/(asce)0733-9399(1998)124:8(892)

Li, W., Sun, L., Zhao, J., Lu, P., and Yang, F. (2018). Seismic performance of reinforced concrete columns confined with two layers of stirrups. The Structural Design of Tall and Special Buildings, 27(12), e1484. https://doi.org/10.1002/tal.1484

Lima de Resende, T., da Conceição Domingues Shehata, L., and Abd El Malik Shehata, I. (2016). Shear strength of self-compacting concrete beams with small stirrups ratios. Structural Concrete, 17(1), 3-10. https://doi.org/10.1002/suco.201400084

Lubliner, J., Oliver, J., Oller, S., and Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4

Mesa, M., and Álvarez, J. (2011). Calibración numérica de un problema de ingeniería vial. Revista de la construcción, 10(3), 52-63. http://dx.doi.org/10.4067/S0718-915X2011000300006

NTCM (2017). Normas técnicas complementarias para el diseño y construcción de estructuras de mampostería. NTCM.

Pérez-Caldentey, A., Corres Peiretti, H., Peset Iribarren, J., and Giraldo-Soto, A. (2013). Cracking of RC members revisited: Influence of cover, ϕ/ρs,ef and stirrup spacing – An experimental and theoretical study. Structural Concrete, 14(1), 69-78. https://doi.org/10.1002/suco.201200016

Ridha, M. M. S., Al-Shaarbaf, I. A. S., and Sarsam, K. F. (2018). Experimental study on shear resistance of reactive powder concrete beams without stirrups. Mechanics of Advanced Materials and Structures, 27(12), 1006-1018. https://doi.org/10.1080/15376494.2018.1504258

Rodríguez, M. (2009). Confined masonry constructions. https://www.world-housing.net/wp-content/uploads/2011/05/Confined-Masonry_Rodriguez.pdf.

Salah-Eldin, A., Mohamed, H. M., and Benmokrane, B. (2019). Structural performance of high-strength-concrete columns reinforced with GFRP bars and ties subjected to eccentric loads. Engineering Structures, 185, 286-300. https://doi.org/10.1016/j.engstruct.2019.01.143

Sümer, Y., and Aktas, M. (2015). Defining parameters for concrete damage plasticity model. Challenge Journal of Structural Mechanics, 1(3), 149-155. https://doi.org/10.20528/cjsmec.2015.07.023

Sun, C. T., and Jin, Z. H. (2012). Fracture mechanics. Academic Press.

Sun, L., and Li, W. (2019). Cyclic behavior of reinforced concrete columns confined with two layers of stirrups. Structural Concrete, 20(4), 1279-1291. https://doi.org/10.1002/suco.201800229

Tan, R., Eileraas, K., Opkvitne, O., Žirgulis, G., Hendriks, M. A. N., Geiker, M., Brekke, D.-E., and Kanstad, T. (2018). Experimental and theoretical investigation of crack width calculation methods for RC ties. Structural Concrete, 19(5), 1436-1447. https://doi.org/10.1002/suco.201700237

Telford, T. (2010). CEB-FIP, Model Code. International Federation for Structural Concrete.

Yun, X., and Gardner, L. (2017). Stress-strain curves for hot-rolled steels. Journal of Constructional Steel Research, 133, 36-46. https://doi.org/10.1016/j.jcsr.2017.01.024

How to Cite

APA

Álvarez-Pérez , J., Mesa Lavista, M., Chávez-Gómez, J. H., Terán-Torres , B. T., Hermosillo-Mendoza, R. and Cavazos de Lira, D. (2023). Strapping Spiral Ties for Short Tie-Columns in Confined Masonry Walls Using a Micro-Numerical Model. Ingeniería e Investigación, 43(2), e97253. https://doi.org/10.15446/ing.investig.97253

ACM

[1]
Álvarez-Pérez , J., Mesa Lavista, M., Chávez-Gómez, J.H., Terán-Torres , B.T., Hermosillo-Mendoza, R. and Cavazos de Lira, D. 2023. Strapping Spiral Ties for Short Tie-Columns in Confined Masonry Walls Using a Micro-Numerical Model. Ingeniería e Investigación. 43, 2 (Mar. 2023), e97253. DOI:https://doi.org/10.15446/ing.investig.97253.

ACS

(1)
Álvarez-Pérez , J.; Mesa Lavista, M.; Chávez-Gómez, J. H.; Terán-Torres , B. T.; Hermosillo-Mendoza, R.; Cavazos de Lira, D. Strapping Spiral Ties for Short Tie-Columns in Confined Masonry Walls Using a Micro-Numerical Model. Ing. Inv. 2023, 43, e97253.

ABNT

ÁLVAREZ-PÉREZ , J.; MESA LAVISTA, M.; CHÁVEZ-GÓMEZ, J. H.; TERÁN-TORRES , B. T.; HERMOSILLO-MENDOZA, R.; CAVAZOS DE LIRA, D. Strapping Spiral Ties for Short Tie-Columns in Confined Masonry Walls Using a Micro-Numerical Model. Ingeniería e Investigación, [S. l.], v. 43, n. 2, p. e97253, 2023. DOI: 10.15446/ing.investig.97253. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/97253. Acesso em: 28 mar. 2024.

Chicago

Álvarez-Pérez , José, Milena Mesa Lavista, Jorge Humberto Chávez-Gómez, Bernardo Tadeo Terán-Torres, Román Hermosillo-Mendoza, and Diego Cavazos de Lira. 2023. “Strapping Spiral Ties for Short Tie-Columns in Confined Masonry Walls Using a Micro-Numerical Model”. Ingeniería E Investigación 43 (2):e97253. https://doi.org/10.15446/ing.investig.97253.

Harvard

Álvarez-Pérez , J., Mesa Lavista, M., Chávez-Gómez, J. H., Terán-Torres , B. T., Hermosillo-Mendoza, R. and Cavazos de Lira, D. (2023) “Strapping Spiral Ties for Short Tie-Columns in Confined Masonry Walls Using a Micro-Numerical Model”, Ingeniería e Investigación, 43(2), p. e97253. doi: 10.15446/ing.investig.97253.

IEEE

[1]
J. Álvarez-Pérez, M. Mesa Lavista, J. H. Chávez-Gómez, B. T. Terán-Torres, R. Hermosillo-Mendoza, and D. Cavazos de Lira, “Strapping Spiral Ties for Short Tie-Columns in Confined Masonry Walls Using a Micro-Numerical Model”, Ing. Inv., vol. 43, no. 2, p. e97253, Mar. 2023.

MLA

Álvarez-Pérez , J., M. Mesa Lavista, J. H. Chávez-Gómez, B. T. Terán-Torres, R. Hermosillo-Mendoza, and D. Cavazos de Lira. “Strapping Spiral Ties for Short Tie-Columns in Confined Masonry Walls Using a Micro-Numerical Model”. Ingeniería e Investigación, vol. 43, no. 2, Mar. 2023, p. e97253, doi:10.15446/ing.investig.97253.

Turabian

Álvarez-Pérez , José, Milena Mesa Lavista, Jorge Humberto Chávez-Gómez, Bernardo Tadeo Terán-Torres, Román Hermosillo-Mendoza, and Diego Cavazos de Lira. “Strapping Spiral Ties for Short Tie-Columns in Confined Masonry Walls Using a Micro-Numerical Model”. Ingeniería e Investigación 43, no. 2 (March 8, 2023): e97253. Accessed March 28, 2024. https://revistas.unal.edu.co/index.php/ingeinv/article/view/97253.

Vancouver

1.
Álvarez-Pérez J, Mesa Lavista M, Chávez-Gómez JH, Terán-Torres BT, Hermosillo-Mendoza R, Cavazos de Lira D. Strapping Spiral Ties for Short Tie-Columns in Confined Masonry Walls Using a Micro-Numerical Model. Ing. Inv. [Internet]. 2023 Mar. 8 [cited 2024 Mar. 28];43(2):e97253. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/97253

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Milena Mesa-Lavista, Fabiola Yépez-Rincón, Karla Carolina Gutiérrez-González, Yris Laura Mancilla-de la Cruz, Andrea Nathaly Escobedo-Tamez. (2024). Geomática aplicada para la obtención de estados deformacionales en la ingeniería estructural. Revista Ciencia UANL, 27(124), p.45. https://doi.org/10.29105/cienciauanl27.124-6.

Dimensions

PlumX

Article abstract page views

277

Downloads

Download data is not yet available.

Most read articles by the same author(s)